【題目】已知點(diǎn)E、F分別是四邊形ABCD邊AB、AD上的點(diǎn),且DE與CF相交于點(diǎn)G.
(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:
(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時(shí),求證:DECD=CFDA:
(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時(shí),試判斷是否為定值,并證明.
【答案】(1)證明見解析 (2)證明見解析 (3)答案見解析
【解析】
(1)根據(jù)已知條件得到四邊形ABCD是矩形,由矩形的性質(zhì)得到∠A=∠FDC=90°,根據(jù)相似三角形的性質(zhì)得到∠CFD=∠AED,根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2)根據(jù)已知條件得到△DFG∽△DEA,推出,根據(jù)△CGD∽△CDF,得到
,等量代換即可得到結(jié)論;
(3)過C作CN⊥AD于N,CM⊥AB交AB延長(zhǎng)線于M,連接BD,設(shè)CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,解方程得到CN,證出△AED∽△NFC,即可得出答案.
(1)證明:∵AB∥CD,AB=CD,∠A=90°,
∴四邊形ABCD是矩形,
∴∠A=∠FDC=90°,
∵ADDF=AEDC,
∴
∴△AED∽△DFC,
∴∠CFD=∠AED,
∵∠ADE+∠AED=90°,
∴∠ADE+∠CFD=90°,
∴∠DGF=90°,
∴DE⊥CF;
(2)證明:∵∠A=∠EGC,∠ADE=∠GDF,
∴△DFG∽△DEA,
∴
∵AB∥CD,AB=CD,
∴四邊形ABCD是平行四邊形,∠AED=∠EDC,
∴∠B=∠ADC,
∵△DFG∽△DEA,
∴∠AED=∠DFG,
∴DFC=∠GDC,
∵∠DCG=∠FCD,
∴△CGD∽△CDF,
∴
∴,
∴DECD=CFDA;
(3)解:為定值,
理由:過C作CN⊥AD于N,CM⊥AB交AB延長(zhǎng)線于M,連接BD,設(shè)CN=x,
∵∠BAD=90°,即AB⊥AD,
∴∠A=∠M=∠CNA=90°,
∴四邊形AMCN是矩形,
∴AM=CN,AN=CM,
∵在△BAD和△BCD中,
∴△BAD≌△BCD(SSS),
∴∠BCD=∠A=90°,
∴∠ABC+∠ADC=180°,
∵∠ABC+∠CBM=180°,
∴∠MBC=∠ADC,
∵∠CND=∠M=90°,
∴△BCM∽△DCN,
∴,
∴
∴
在Rt△CMB中,,BM=AM﹣AB=x﹣3,由勾股定理得:BM2+CM2=BC2,
∴
x=0(舍去),
∴
∵∠A=∠FGD=90°,
∴∠AED+∠AFG=180°,
∵∠AFG+∠NFC=180°,
∴∠AED=∠CFN,
∵∠A=∠CNF=90°,
∴△AED∽△NFC,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM//BN,∠A=600.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)①∠ABN的度數(shù)是 ;②∵AM //BN,∴∠ACB=∠ ;
(2)求∠CBD的度數(shù);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.
(4)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),∠ABC的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=12,點(diǎn)M、N是線段AB上的兩點(diǎn),且AM=BN=2,點(diǎn)P是線段MN上的動(dòng)點(diǎn),分別以線段AP、BP為邊在AB的同側(cè)作正方形APDC、正方形PBFE,點(diǎn)G、H分別是CD、EF的中點(diǎn),點(diǎn)O是GH的中點(diǎn),當(dāng)P點(diǎn)從M點(diǎn)到N點(diǎn)運(yùn)動(dòng)過程中,OM+OB的最小值是( )
A.10B.12C.2 D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題:
(1)(-20)+(+3)+(-5)+(+7);
(2)16-(-15)-4+(-5);
(3)(-12)×(-37)×;
(4)(-)÷÷(-);
(5)-30×();
(6)-3-[-5 +(1-×0.6)÷(-3)]
(7)
(8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù) y=的圖像經(jīng)過點(diǎn)A(-1,a),過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,△AOB的面積為.
(1)求a、k的值;
(2)若一次函數(shù)y=mx+n圖像經(jīng)過點(diǎn)A和反比例函數(shù)圖像上另一點(diǎn),且與x軸交于M點(diǎn),求AM的值:
(3)在(2)的條件下,如果以線段AM為一邊作等邊△AMN,頂點(diǎn)N在一次數(shù)函數(shù)y=bx上,則b= ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將含有45°角的直角三角板ABC和直尺如圖擺放在桌子上,然后分別過A、B兩個(gè)頂點(diǎn)向直尺作兩條垂線段AD,BE.
(1)請(qǐng)寫出圖中的一對(duì)全等三角形并證明;
(2)你能發(fā)現(xiàn)并證明線段AD,BE,DE之間的關(guān)系嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:
類別 | 成本價(jià)(元/箱) | 銷售價(jià)(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以點(diǎn)O為圓心,OB為半徑作圓,過點(diǎn)C作CD∥AB交⊙O于點(diǎn)D,連接BD.
(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;
(2)試判斷四邊形BOCD的形狀,并證明你的判斷;
(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)分別為4和8的兩個(gè)正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長(zhǎng)交EG于點(diǎn)T,交FG于點(diǎn)P,則GT的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com