【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.

【答案】
(1)

解對任意一個完全平方數(shù)m,設m=n2(n為正整數(shù)),

∵|n﹣n|=0,

∴n×n是m的最佳分解,

∴對任意一個完全平方數(shù)m,總有F(m)= =1


(2)

解:設交換t的個位上的數(shù)與十位上的數(shù)得到的新數(shù)為t′,則t′=10y+x,

∵t為“吉祥數(shù)”,

∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,

∴y=x+2,

∵1≤x≤y≤9,x,y為自然數(shù),

∴“吉祥數(shù)”有:13,24,35,46,57,68,79,

∴F(13)= ,F(xiàn)(24)= = ,F(xiàn)(35)= ,F(xiàn)(46)= ,F(xiàn)(57)= ,F(xiàn)(68)= ,F(xiàn)(79)= ,

,aaa

∴所有“吉祥數(shù)”中,F(xiàn)(t)的最大值是


【解析】(1)根據(jù)題意可設m=n2 , 由最佳分解定義可得F(m)= =1;(2)根據(jù)“吉祥數(shù)”定義知(10y+x)﹣(10x+y)=18,即y=x+2,結合x的范圍可得2位數(shù)的“吉祥數(shù)”,求出每個“吉祥數(shù)”的F(t),比較后可得最大值.本題主要考查實數(shù)的運算,理解最佳分解、“吉祥數(shù)”的定義,并將其轉(zhuǎn)化為實數(shù)的運算是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為1,M、N分別是AD、BC邊上的點,且AB∥MN,將紙片的一角沿過點B的直線折疊,使A落在MN上,落點記為A′,折痕交AD于點E,若M是AD邊上距D點最近的n等分點(n≥2,且n為整數(shù)),則A′N=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了弘揚“社會主義核心價值觀”,市政府在廣場樹立公益廣告牌,如圖所示,為固定廣告牌,在兩側加固鋼纜,已知鋼纜底端D距廣告牌立柱距離CD為3米,從D點測得廣告牌頂端A點和底端B點的仰角分別是60°和45°.

(1)求公益廣告牌的高度AB。
(2)求加固鋼纜AD和BD的長.(注意:本題中的計算過程和結果均保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+4與x軸交于A,B兩點,與y軸交于C點,且A(﹣2,0)、B(4,0),其頂點為D,連接BD,點P是線段BD上的一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.

(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)設P點的坐標為(x,y),△PBE的面積為S,求S與x之間的函數(shù)關系式,寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當S取值最大值時,過點P作x軸的垂線,垂足為F,連接EF,△PEF沿直線EF折疊,點P的對應點為點P′,請直接寫出P′點的坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=6,點E在邊CD上,DE= DC,連接AE,將△ADE沿AE翻折,點D落在點F處,點O是對角線BD的中點,連接OF并延長OF交CD于點G,連接BF,BG,則△BFG的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在直線道路上同起點、同終點、同方向,分別以不同的速度勻速跑步1500米,先到終點的人原地休息,已知甲先出發(fā)30秒后,乙才出發(fā),在跑步的整個過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間x(秒)之間的關系如圖所示,則乙到終點時,甲距終點的距離是米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠B=45°,∠C=30°,點D是BC上一點,連接AD,過點A作AG⊥AD,在AG上取點F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.

(1)若AB=2 ,求BC的長;
(2)如圖1,當點G在AC上時,求證:BD= CG;
(3)如圖2,當點G在AC的垂直平分線上時,直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=63°,直線MN∥BC,且分別與AB,AC相交于點D,E,若∠AEN=133°,則∠B的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解中考考生最喜歡做哪種類型的英語客觀題,2015年志愿者奔赴全市中考各考點對英語客觀題的“聽力部分、單項選擇、完型填空、閱讀理解、口語應用”進行了問卷調(diào)查,要求每位考生都自主選擇其中一個類型,為此隨機調(diào)查了各考點部分考生的意向.并將調(diào)查結果繪制成如圖的統(tǒng)計圖表(問卷回收率為100%,并均為有效問卷).
被調(diào)查考生選擇意向統(tǒng)計表

題型

所占百分比

聽力部分

a

單項選擇

35%

完型填空

b

閱讀理解

10%

口語應用

c

根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

(1)求本次被調(diào)查的考生總人數(shù)及a、b、c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)全市參加這次中考的考生共有42000人,試估計全市考生中最喜歡做“單項選擇”這類客觀題的考生有多少人?

查看答案和解析>>

同步練習冊答案