【題目】如圖,在平面直角坐標(biāo)系上有點A(1,0),點A第一次跳動至點A1(1,1),第二次向右跳動3個單位至點A2(2,1),第三次跳動至點A3(22),第四次向右跳動5個單位至點A4(3,2),,以此規(guī)律跳動下去,點A100次跳動至點A100的坐標(biāo)是()

A.(5050)B.(51,51)C.(51,50)D.(5051)

【答案】C

【解析】

觀察所給圖形,不難得到第偶數(shù)次跳動至點的橫坐標(biāo)是跳的次數(shù)的一半加上1,縱坐標(biāo)是跳的次數(shù)的一半;由此可得規(guī)律:第2n次跳動至點A2n的坐標(biāo)是(n+1n),進(jìn)而求出點A100的坐標(biāo).

觀察發(fā)現(xiàn)可知:

2次跳動至點A1的坐標(biāo)是(2,1),

4次跳動至點A4的坐標(biāo)是(3,2),

6次跳動至點A6的坐標(biāo)是(43),

8次跳動至點A8的坐標(biāo)是(54),

則第2n次跳動至點A2n的坐標(biāo)是(n+1,n),

故第100次跳動至點的坐標(biāo)是(5150).

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點O沿x軸向左平移2個單位長度得到點A,過點Ay軸的平行線交反比例函數(shù)的圖象于點B,

求反比例函數(shù)的解析式;

、是該反比例函數(shù)圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB6cm,BC4cm,AC3cm.將△ABC沿著與AB垂直的方向向上平移3cm,得到△DEF

1)四邊形ABDF是什么四邊形?

2)求陰影部分的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察推理:如圖①,在中,,直線過點,點在直線的同側(cè),,垂足分別為.求證:.

(2)類比探究:如圖②,在中,,將斜邊繞點逆時針旋轉(zhuǎn)90°至,連接,求的面積.

(3)拓展提升:如圖③,在中,,點上,且,動點從點沿射線以每秒1個單位長度的速度運動,連接,將線段繞點逆時針旋轉(zhuǎn)120°得到線段.要使點恰好落在射線上,求點運動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點DE

1)若A = 40°,求DCB的度數(shù).

2)若AE=4,DCB的周長為14,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿對角線折疊,設(shè)重疊部分為EBD,那么下列說法錯誤的是( 。

A. EBD是等腰三角形,EB=ED B. 折疊后ABE和C′BD一定相等

C. 折疊后得到的圖形是軸對稱圖形 D. EBA和EDC′一定是全等三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在△ABC 中,AB=ACD、E BC 上異于 B、C 的任意兩點,連接 AD AE,且AD=AE.

(1)圖中有幾組全等三角形?請分別寫出來;

(2)選擇其中的一組證明兩三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,若∠BAD與∠ABC的角平分線分別交CD于點E,F,且AD=2EF=2,則AB=___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在學(xué)校組織的研究性學(xué)習(xí)活動中了解所居住的小區(qū)500戶居民的人均收入情況,從中隨機(jī)調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖,根據(jù)以上提供的信息,解答下列問題:

分組

頻數(shù)

百分比

600≤x800

2

5%

800≤x1000

6

15%

1000≤x1200

45%

9

22.5%

1600≤x1800

2

合計

40

100%

1)補(bǔ)全頻數(shù)分布表.

2)補(bǔ)全頻數(shù)分布直方圖.

3)請你估計該居民小區(qū)家庭人均收入屬于中等收入(1000≤x1600)的大約有多少戶?

查看答案和解析>>

同步練習(xí)冊答案