【題目】如圖,已知點在軸上,反比例函數(shù)的圖象經(jīng)過的頂點和的中點,,則點的坐標(biāo)為________.
【答案】
【解析】
延長CB交軸于點E,可證得為等腰直角三角形,利用反比例函數(shù)圖像上的坐標(biāo)特征求得點B的坐標(biāo)為(2,2),設(shè)OA=BC=,則點A的坐標(biāo)為(0,),點C的坐標(biāo)為(2,),求得AC中點D的坐標(biāo)為(1,),將D(1,)代入,即可求解.
延長CB交軸于點E,
∵四邊形ABCD是平行四邊形,∠ACB=45°,
∴OA=BC,OA∥BC,∠AOB=∠ACB=45°,
∴CE⊥OE,∠AOB=∠BOE=45°,
∴為等腰直角三角形,
∴OE=BE,
設(shè)點B的坐標(biāo)為(m,m),
把B (m,m)代入,得,
解得:(負(fù)值舍去),
設(shè)OA=BC=,
∴點A的坐標(biāo)為(0,),則點C的坐標(biāo)為(2,),
∴AC中點D的坐標(biāo)為(,),即(1,),
∵把D(1,)代入,得,
解得:,
∴點C的坐標(biāo)為(,),
故答案為:(,) .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店專售一款電動牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中一漁船在A處于小島C相距70海里,若該漁船由西向東航行30海里到達(dá)B處,此時測得小島C位于B的北偏東30°方向上,則該漁船此時與小島C之間的距離是__海里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等邊△OAB和菱形OCDE的邊OA,OE都在x軸上,點C在OB邊上,S△ABD=,反比例函數(shù)(x>0)的圖象經(jīng)過點B,則k的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸負(fù)半軸上.O是坐標(biāo)原點,點A(﹣13,0),對角線AC與OB相交于點D,且ACOB=130,若反比例函數(shù)y=(x<0)的圖象經(jīng)過點D,并與BC的延長線交于點E.
(1)求雙曲線y=的解析式;
(2)求S△AOB:S△OCE之值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點是上一動點,點是點關(guān)于直線的對稱點,在點的運(yùn)動過程中有且只有一個點到線段的距離為4,則的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知的直角頂點,斜邊在軸上,且點的坐標(biāo)為,點是的中點,點是邊上的一個動點,拋物線過,,三點.
(1)當(dāng)時,
①求拋物線的解析式;
②平行于對稱軸的直線與軸,,分別交于點,,,若以點,,為頂點的三角形與相似,求點的值.
(2)以為等腰三角形頂角頂點,為腰構(gòu)造等腰,且點落在軸上.若在軸上滿足條件的點有且只有一個時,請直接寫出點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com