【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

(1)在圖中畫(huà)出與△ABC關(guān)于直線(xiàn)l成軸對(duì)稱(chēng)的△A′B′C′.

(2)四邊形 ABCA′的面積為_____;

(3)在直線(xiàn)l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短,則這個(gè)最短長(zhǎng)度為______.

【答案】(1)見(jiàn)解析;(2);(3).

【解析】

1)根據(jù)題意作出圖形即可;

2)用割補(bǔ)法求解即可得到結(jié)論;

3)作出圖形,根據(jù)勾股定理求得結(jié)果即可.

1)如圖所示,△A'B'C'即為所求;

2)四邊形ABCA'的面積=4×42×11×43×3=;

3)連接AB'交直線(xiàn)l與點(diǎn)P

PA+PB長(zhǎng)的最短值=AB',∴AB';∴這個(gè)最短長(zhǎng)度為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠C=90°,AC=6,BC=8(如圖),點(diǎn)D是邊AB上一點(diǎn),把ABC繞著點(diǎn)D旋轉(zhuǎn)90°得到A'B'C',邊B'C'與邊AB相交于點(diǎn)E,如果AD=BE,那么AD長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,學(xué)習(xí)完代人消元法加減消元法解二元一次方程組后,善于思考的小銘在解方程組時(shí),采用了一種整體代換的解法:

解:將方程②變形:4x+10y+y=52(2x+5y)+y=5

把方程①代入③得:2×3+y=5,∴y=-1①得x=4,所以,方程組的解為

請(qǐng)你解決以下問(wèn)題:

(1)模仿小銘的整體代換法解方程組

(2)已知x,y滿(mǎn)足方程組,求x2+4y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在推進(jìn)新課改的過(guò)程中,開(kāi)設(shè)的課程超市有:A.炫彩劇社,B.烹飪,C.游泳,D.羽毛球,E.科技等五個(gè)科目,學(xué)生可根據(jù)自己的愛(ài)好選修一門(mén),負(fù)責(zé)課程超市的老師對(duì)七年級(jí)一班全體同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),并將結(jié)果繪制成了如下兩幅尚不完整的統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)請(qǐng)求出該班的總?cè)藬?shù);

(2)扇形統(tǒng)計(jì)圖中,D所在扇形的圓心角度數(shù)為   ,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該班班委4人中,1人選修炫彩劇社,2人選修烹飪,1人選修游泳,老師要從這4人中任選2人了解他們對(duì)課程超市課程安排的看法,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法,求選出的2人恰好1人選修炫彩劇社,1人選修烹飪的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1和圖2,半圓O的直徑AB=2,點(diǎn)P不與點(diǎn)A,B重合為半圓上一點(diǎn),將圖形延BP折疊,分別得到點(diǎn)A,O的對(duì)稱(chēng)點(diǎn)A′,O′,設(shè)ABP=α

1當(dāng)α=15°時(shí),過(guò)點(diǎn)A′作A′CAB,如圖1,判斷A′C與半圓O的位置關(guān)系,并說(shuō)明理由

2如圖2,當(dāng)α= °時(shí),BA′與半圓O相切當(dāng)α= °時(shí),點(diǎn)O′落在

3當(dāng)線(xiàn)段BO′與半圓O只有一個(gè)公共點(diǎn)B時(shí),求α的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為表彰在某活動(dòng)中表現(xiàn)積極的同學(xué),老師決定購(gòu)買(mǎi)文具盒與鋼筆作為獎(jiǎng)品.已知5個(gè)文具盒、2支鋼筆共需100元;3個(gè)文具盒、1支鋼筆共需57元.

(1)每個(gè)文具盒、每支鋼筆各多少元?

(2)若本次表彰活動(dòng),老師決定購(gòu)買(mǎi)10件作為獎(jiǎng)品,若購(gòu)買(mǎi)個(gè)文具盒,10件獎(jiǎng)品共需元,求的函數(shù)關(guān)系式.如果至少需要購(gòu)買(mǎi)3個(gè)文具盒,本次活動(dòng)老師最多需要花多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在△ABC中,∠C=90°,AC=3cm,BC=4cm,點(diǎn)P是邊BC上由BC運(yùn)動(dòng)(不與點(diǎn)B、C重合)的一動(dòng)點(diǎn),P點(diǎn)的速度是1cm/s,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,過(guò)P點(diǎn)作AC的平行線(xiàn)交AB與點(diǎn)N,連接AP,

(1)請(qǐng)用含有t的代數(shù)式表示線(xiàn)段AN和線(xiàn)段PN的長(zhǎng),

(2)當(dāng)t為何值時(shí),△APN的面積等于△ACP面積的三分之一?

(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻的t的值,使得△APN的面積有最大值,若存在請(qǐng)求出t的值并計(jì)算最大面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC中,AB=AC=10,BC=16,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),直線(xiàn)DE垂直平分BF,垂足為D.當(dāng)△ACF是直角三角形時(shí),線(xiàn)段BD的長(zhǎng)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,完成(1-3)題
數(shù)學(xué)課上,老師出示了這樣一道題:如圖, 中,,點(diǎn)P為邊AB上一點(diǎn)(不與A、B重合),過(guò)PQ,做QEABBC于點(diǎn)E,連接PE,將線(xiàn)段PE繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°到PF,連接QF,探究線(xiàn)段之間的數(shù)量關(guān)系并證明.
同學(xué)們經(jīng)過(guò)思考后,交流了自已的想法
小明:“通過(guò)觀察和度量,發(fā)現(xiàn)為直角.”
小偉:“我通過(guò)一線(xiàn)三直角的模型構(gòu)造三角形全等可以解決問(wèn)題.”
小強(qiáng):“我構(gòu)造等腰直角三角形,再利用全等三角形可以解決問(wèn)題.”
老師:“若其他條件不變,PE=AC,就可以求出的值.”
1多少度?四邊形為什么特殊四邊形?(直接寫(xiě)出答案)
2)探究線(xiàn)段之間的數(shù)量關(guān)系并證明;
3)若其他條件不變,PE=AC,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案