【題目】已知拋物線y=ax2+bx+c(x為任意實(shí)數(shù))經(jīng)過下圖中兩點(diǎn)M(1,﹣2)、N(m,0),其中M為拋物線的頂點(diǎn),N為定點(diǎn).下列結(jié)論:
①若方程ax2+bx+c=0的兩根為x1,x2(x1<x2),則﹣1<x1<0,2<x2<3;
②當(dāng)x<m時(shí),函數(shù)值y隨自變量x的減小而減。
③a>0,b<0,c>0.
④垂直于y軸的直線與拋物線交于C、D兩點(diǎn),其C、D兩點(diǎn)的橫坐標(biāo)分別為s、,則s+t=2.
其中正確的是( 。
A. ①② B. ①④ C. ②③ D. ②④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司現(xiàn)有A,B,C,D四種型號的甲品牌電腦和E、F兩種型號的乙品牌電腦.實(shí)驗(yàn)中學(xué)要從甲、乙兩種品牌電腦中各選購一種型號的電腦.
(1)寫出所有選購方案;
(2)如果(1)中各種選購方案被選中的可能性相等,那么A型電腦被選中的概率是多少?A型與E型號被同時(shí)選中的概率是多少?
(3)現(xiàn)知實(shí)驗(yàn)中學(xué)購買甲、乙兩種品牌電腦共10臺(價(jià)格如圖所示),恰好用了4萬元人民幣,其中甲品牌電腦為A型號電腦,那么購買A型號電腦有幾臺?.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AD與⊙O相切于一點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長線上一點(diǎn),且CE=CB.
⑴求證:BC為⊙O的切線;
⑵若AB=2,AD=2,求線段BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“垃圾分類”,環(huán)保部門要求垃圾要按A,B,C,D四類分別裝袋、投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料、廢紙等可回收物,D類指出其他垃圾,小明、小亮各投放了一袋垃圾.
(1)直接寫出小明投放的垃圾恰好是A類的概率;
(2)求小亮投放的垃圾與小明投放的垃圾是同一類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙A過OBCD的三頂點(diǎn)O、D、C,邊OB與⊙A相切于點(diǎn)O,邊BC與⊙O相交于點(diǎn)H,射線OA交邊CD于點(diǎn)E,交⊙A于點(diǎn)F,點(diǎn)P在射線OA上,且∠PCD=2∠DOF,以O(shè)為原點(diǎn),OP所在的直線為x軸建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(0,﹣2).
(1)若∠BOH=30°,求點(diǎn)H的坐標(biāo);
(2)求證:直線PC是⊙A的切線;
(3)若OD=,求⊙A的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天早上小華步行上學(xué),他離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開.為了不遲到,小華跑步到了學(xué)校,則小華離學(xué)校的距離y與時(shí)間t之間的函數(shù)關(guān)系的大致圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中:①有一個(gè)外角是的等腰三角形是等邊三角形;②有兩個(gè)外角相等的等腰三角形是等邊三角形;③有一邊上的高也是這邊上的中線的三角形是等邊三角形;④三個(gè)外角都相等的三角形是等邊三角形.正確的命題有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)八年級師生共466人準(zhǔn)備參加社會(huì)實(shí)踐活動(dòng),現(xiàn)預(yù)備了49座和37座兩種客車共10輛,剛好坐滿.已知37座客車租金為每輛700元,49座客車為每輛1200元,問:
(1)49座和37座兩種客車各租了多少輛?
(2)若租用同種客車,要使每位師生都有座位,應(yīng)該怎么租用才合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k為常數(shù),k≠0)與雙曲線y=(m為常數(shù),m>0)的交點(diǎn)為A(4,1)、B(﹣1,﹣4),連接AO并延長交雙曲線于點(diǎn)E,連接BE.
(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;
(2)求△ABE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com