【題目】如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長(zhǎng)線于點(diǎn)F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長(zhǎng),
【答案】(1)見(jiàn)解析;(2)EC=4.
【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性質(zhì)可推出∠F=∠BDE,再根據(jù)對(duì)頂角相等進(jìn)行等量代換即可推出∠F=∠FDA,于是得到結(jié)論;
(2)根據(jù)解直角三角形和等邊三角形的性質(zhì)即可得到結(jié)論.
(1)∵AB=AC,
∴∠B=∠C,
∵FE⊥BC,
∴∠F+∠C=90°,∠BDE+∠B=90°,
∴∠F=∠BDE,
而∠BDE=∠FDA,
∴∠F=∠FDA,
∴AF=AD,
∴△ADF是等腰三角形;
(2)∵DE⊥BC,
∴∠DEB=90°,
∵∠B=60°,BD=4,
∴BE=BD=2,
∵AB=AC,
∴△ABC是等邊三角形,
∴BC=AB=AD+BD=6,
∴EC=BC﹣BE=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)分別為,,且,圖象上有一點(diǎn)在軸下方,對(duì)于以下說(shuō)法:
①;②是方程的解;③;
④.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)B、C的坐標(biāo)分別為(-1, 3), (0, 1).
(1)建立符合條件的直角坐標(biāo)系(要求標(biāo)出x軸,y軸和原點(diǎn)),并寫(xiě)出點(diǎn)A的坐標(biāo)
(2)線段AB上任意一點(diǎn)的坐標(biāo)可以表示為
(3)在y軸上找到一點(diǎn)P,使得S△ABP = 3S△ABC,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,過(guò)點(diǎn)C作CD⊥AB于D,∠A=30°,BD=1,則AB的值是( 。.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,對(duì)進(jìn)行循環(huán)往復(fù)的軸對(duì)稱變換,若原來(lái)點(diǎn)A坐標(biāo)是,則經(jīng)過(guò)第2019次變換后所得的A點(diǎn)坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)C與A重合,點(diǎn)D落到D′處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線是第一、三象限的角平分線.
(1)由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)、C(-2,5)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,并寫(xiě)出他們的坐標(biāo):___________、___________;
(2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)關(guān)于第一、三象限的角平分線的對(duì)稱點(diǎn)的坐標(biāo)為___________(不必證明);
(3)已知兩點(diǎn)、,試在直線L上畫(huà)出點(diǎn)Q,使點(diǎn)Q到D、E兩點(diǎn)的距離之和最小,求QD+QE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀、思考、解決問(wèn)題:
(1)如圖(1)兩個(gè)函數(shù)和的圖象交于點(diǎn),的坐標(biāo)是否滿足這兩個(gè)函數(shù)式?即是方程的解嗎?是方程的解嗎?答: ① (是、不是)這就是說(shuō):函數(shù)和圖象的交點(diǎn)坐標(biāo) ② (是、不是)方程組的解;反之,方程組的解 ③ (是、不是)函數(shù)和圖象的交點(diǎn)坐標(biāo).
(2)根據(jù)圖(2)寫(xiě)出方程組的解是:____________
(3)已知兩個(gè)一次函數(shù)和.
①求這兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo);
②在圖(3)的坐標(biāo)系中畫(huà)出這兩個(gè)函數(shù)的圖象
③根據(jù)圖象寫(xiě)出當(dāng)時(shí),的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)手操作:長(zhǎng)為1,寬為a的長(zhǎng)方形紙片(<a<l),如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于長(zhǎng)方形寬度的正方形(稱為第一次操作);再把剩下的長(zhǎng)方形如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于此時(shí)長(zhǎng)方形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的長(zhǎng)方形為正方形,則操作終止.當(dāng)n=3時(shí),a的值為( )
A.B.或C.或D.或
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com