【題目】如圖,△OAB與△OCD是以點(diǎn)O為位似中心的位似圖形,相似比為1:2,∠OCD=90°,CO=CD,若B(1,0),則點(diǎn)C的坐標(biāo)為______.
【答案】(1,1)
【解析】
首先利用等腰直角三角形的性質(zhì)得出A點(diǎn)坐標(biāo),再利用位似是特殊的相似,若兩個(gè)圖形△ABC和△A′B′C′以原點(diǎn)為位似中心,相似比是k,△ABC上一點(diǎn)的坐標(biāo)是(x,y),則在△A′B′C′中,它的對(duì)應(yīng)點(diǎn)的坐標(biāo)是(kx,ky)或(-kx,-ky),進(jìn)而求出即可.
解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB與等腰Rt△OCD是位似圖形,點(diǎn)B的坐標(biāo)為(1,0),
∴BO=1,則AO=AB=,
∴A(,),
∵等腰Rt△OAB與等腰Rt△OCD是位似圖形,O為位似中心,相似比為1:2,
∴點(diǎn)C的坐標(biāo)為:(1,1).
故答案為:(1,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A′B′C , 連結(jié)AB′.若A、B′、A′在同一條直線上,則AA′的長(zhǎng)為( )
A. 6 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備進(jìn)一批小工藝品,每件的成本是40元,經(jīng)市場(chǎng)調(diào)查,銷售單價(jià)為50元,每天銷售量為100個(gè),若銷售單價(jià)每增加1元,銷售量將減少10個(gè).
(1)求每天銷售小工藝品的利潤(rùn)y(元)和銷售單價(jià)x(元)之間的函數(shù)解析式;
(2)商店若準(zhǔn)備每天銷售小工藝品獲利960元,則每天銷售多少個(gè)?銷售單價(jià)定為多少元?
(3)直接寫出銷售單價(jià)為多少元時(shí),每天銷售小工藝品的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,某人分別在塔的對(duì)面一樓房CD的樓底C、樓頂D處,測(cè)得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度。(結(jié)果精確到0.1m)(參考數(shù)據(jù)≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊BC為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB于點(diǎn)E.
(1)如圖1,若∠ABC=90°,求證:OE∥AC;
(2)如圖2,已知AB=AC,若sin∠ADE=, 求tanA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F,交AD于點(diǎn)E.
(1)求證:AG=CG;
(2)求證:AG2=GE·GF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個(gè)頂點(diǎn)分別在邊AB、AC上.
(1)若這個(gè)矩形是正方形,那么邊長(zhǎng)是多少?
(2)當(dāng)PQ的值為多少時(shí),這個(gè)矩形面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8×8正方形網(wǎng)格中,點(diǎn)A、B、C和O都為格點(diǎn).
(1)利用位似作圖的方法,以點(diǎn)O為位似中心,可將格點(diǎn)三角形ABC擴(kuò)大為原來的2倍.請(qǐng)你在網(wǎng)格中完成以上的作圖(點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別用A′、B′、C′表示);
(2)當(dāng)以點(diǎn)O為原點(diǎn)建立平面坐標(biāo)系后,點(diǎn)C的坐標(biāo)為(﹣1,2),則A′、B′、C′三點(diǎn)的坐標(biāo)分別為:A′: B′: C′: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com