【題目】如圖,以△ABC的邊BC為直徑的⊙OAC于點D,過點D⊙O的切線交AB于點E.

(1)如圖1,若∠ABC=90°,求證:OE∥AC;

(2)如圖2,已知AB=AC,若sin∠ADE=, tanA的值.

【答案】(1)詳見解析;(2)tanA=

【解析】

(1)連結OD,如圖1,先根據(jù)切線的性質(zhì)得到∠ODE=90°,然后通過HL證明Rt△OBE≌Rt△ODE,得到∠1=∠2,利用三角形的外角性質(zhì)得到∠2=∠C,再根據(jù)平行線的判定定理即可得證;

(2)連結OD,作OF⊥CDF,DH⊥OCH,如圖2,易證∠A=∠COD,根據(jù)切線的性質(zhì)與兩角互余可得∠ADE=∠DOF,則在Rt△DOF中,sin∠DOF==,DF=x,則OD=3x,然后用含x的式子表示相關線段的長,然后求得tanA的值即可.

:(1)證明:連結OD,如圖1,

∵DE⊙O的切線,

∴OD⊥DE,

∴∠ODE=90°,

Rt△OBERt△ODE中,

,

∴Rt△OBE≌Rt△ODE,

∴∠1=∠2,

∵OC=OD,

∴∠3=∠C,

∠1+∠2=∠C+∠3,

∴∠2=∠C,

∴OE∥AC;

(2)解:連結OD,作OF⊥CDF,DH⊥OCH,如圖2,

∵AB=AC,OC=OD,

∠ACB=∠OCD,

∴∠A=∠COD,

∵DE⊙O的切線,

∴OD⊥DE,

∴∠ODE=90°,

∴∠ADE+∠ODF=90°,

∠DOF+∠ODF=90°,

∴∠ADE=∠DOF,

∴sin∠DOF=sin∠ADE=,

Rt△DOF中,sin∠DOF==

DF=x,則OD=3x,

∴OF==2x,DF=CF=x,OC=3x,

DHOC=OFCD,

∴DH==x,

Rt△ODH中,OH==x,

∴tan∠DOH===,

∴tan∠A=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA 為⊙O 的切線A 為切點, A 作弦 ABOP,垂足為點 C,延長BO PA 的延長線交于點 D

(1) 求證PB 為⊙O 的切線

(2) OB=3,OD=5,求 PB 的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,拋物線y=-x2+bx+cx軸的兩個交點分別為A(1,0),B(3,0).

(1)求拋物線的解析式;

(2)設點P在該拋物線上滑動,且滿足條件SPAB=1的點P有幾個?并求出所有點P的坐標;

(3)設拋物線交y軸于點C,問該拋物線對稱軸上是否存在點M,使得△MAC的周長最小?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)在同一平面直角坐標系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB與△OCD是以點O為位似中心的位似圖形,相似比為1:2,∠OCD=90°,CO=CD,若B(1,0),則點C的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,Rt△ACB中,AC=3,BC=4,有一動圓⊙O始終與Rt△ACB的斜邊AB相切于動點P,且⊙O始終經(jīng)過直角頂點C

(1)如圖2,當⊙O 運動至與直角邊AC相切時,求此時⊙O 的半徑r的長;

(2)試求⊙O 的半徑r的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C在半圓上,過點C的切線交BA的延長線于點D,CD=CB,CEAB交半圓于點E.

(1)求∠D的度數(shù);

(2)求證:以點C,O,B,E為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀解答:

題目:已知方程x2+3x+1=0的兩根為a,b,求的值.

解:①∵△=b2﹣4ac=32﹣4×1×1=5>0a≠b

②由一元二次方程根與系數(shù)關系得:a+b=﹣3,ab=1;

③∴

問題:上面的解題過程是否正確?若不正確,指出錯在哪一步?寫出正確的解題過程.

查看答案和解析>>

同步練習冊答案