如圖,已知二次函數(shù)y=-x2+mx+4m的圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn)(B點(diǎn)在A點(diǎn)的右邊),與y軸的正半軸交于點(diǎn)C,且(x1+x2)-x1x2=10.
(1)求此二次函數(shù)的解析式.
(2)寫出B,C兩點(diǎn)的坐標(biāo)及拋物線頂點(diǎn)M的坐標(biāo);
(3)連接BM,動點(diǎn)P在線段BM上運(yùn)動(不含端點(diǎn)B,M),過點(diǎn)P作x軸的垂線,垂足為H,設(shè)OH的長度為t,四邊形PCOH的面積為S.請?zhí)骄浚核倪呅蜳COH的面積S有無最大值?如果有,請求出這個最大值;如果沒有,請說明理由.
解:(1)由根與系數(shù)的關(guān)系,得 ∵(x1+x2)-x1x2=10, ∴m+4m=10,m=2. ∴二次函數(shù)的解析式為y=-x2+2x+8. (2)由-x2+2x+8=0,解得x1=-2,x2=4. y=-x2+2x+8=-(x-1)2+9. ∴B,C,M的坐標(biāo)分別為B(4,0),C(0,8),M(1,9). (3)如圖,過M作MN⊥x軸于N,則ON=1,MN=9,OB=4,BN=3. ∵OH=t(1<t<4),∴BH=4-t. 由PH∥MN,可求得PH=3BH=3(4-t), ∴S=(PH+CO)·OH 。(12-3t+8)t =-t2+10t(1<t<4). S=-t2+10t=-(t-)2+. ∵1<<4. ∴當(dāng)t=時,S有最大值,其最大值為. 分析:(1)由根與系數(shù)的關(guān)系,得到x1和x2的關(guān)系式進(jìn)而求出m的值,所以可求此二次函數(shù)的解析式; (2)令y=0解一元二次方程,可求出B,C兩點(diǎn)的坐標(biāo);把二次函數(shù)的解析式為y=-x2+2x+8配方化為頂點(diǎn)式可求出頂點(diǎn)M的坐標(biāo); (3)過M作MN⊥x軸于N,則ON=1,MN=9,OB=4,BN=3,再由PH∥MN,可求得PH=3BH=3(4-t),所以S=-t2+10t=-(t-)2+可求出四邊形PCOH的面積S最大值. 點(diǎn)評:本題考查了二次函數(shù)的綜合應(yīng)用,將函數(shù)知識與方程、幾何知識有機(jī)地結(jié)合在一起.這類試題一般難度較大.解這類問題關(guān)鍵是善于將函數(shù)問題轉(zhuǎn)化為方程問題,善于利用幾何圖形的有關(guān)性質(zhì)、定理和二次函數(shù)的知識,并注意挖掘題目中的一些隱含條件. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
5 |
2 |
13 |
4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com