【題目】已知∠142°45′,則∠1的余角等于(  )

A.47°55B.47°15C.48°15D.137°55

【答案】B

【解析】

根據(jù)余角的定義計(jì)算90°42°45′即可.

1的余角=90°42°45′47°15′

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠ABC和∠ACB的平分線交于點(diǎn)O,EF經(jīng)過(guò)點(diǎn)O且平行于BC,分別與AB,AC交于點(diǎn)EF

(1)若∠ABC50°,ACB60°,求∠BOC的度數(shù);

(2)若∠ABC,ACB,用,的代數(shù)式表示∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎單車(chē)上學(xué)當(dāng)他騎了一段路時(shí),想起要買(mǎi)某本書(shū),于是又折回到剛經(jīng)過(guò)的某書(shū)店買(mǎi)到書(shū)后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖

根據(jù)圖中提供的信息回答下列問(wèn)題

1小明家到學(xué)校的路程是________

2)小明在書(shū)店停留了___________分鐘

3)本次上學(xué)途中,小明一共行駛了________ 一共用了______ 分鐘

4)在整個(gè)上學(xué)的途中_________(哪個(gè)時(shí)間段)小明騎車(chē)速度最快,最快的速度是___________/

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBC,CFAD,垂足分別為E,F,AE,CF分別與BD交于點(diǎn)GH,且AB=

1)若tan∠ABE =2,求CF的長(zhǎng);

2)求證:BG=DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)說(shuō)明:DCAB;

(2)求∠PFH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,直線MN分別與x軸、y軸交于點(diǎn)M6,0),N0, ),等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸正半軸上,點(diǎn)A恰好落在線段MN上,將等邊△ABC從圖l的位置沿x軸正方向以每秒l個(gè)單位長(zhǎng)度的速度平移,邊ABAC分別與線段MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為ts).

1)等邊△ABC的邊長(zhǎng)為_______

2)在運(yùn)動(dòng)過(guò)程中,當(dāng)t=_______時(shí),MN垂直平分AB

3)若在△ABC開(kāi)始平移的同時(shí).點(diǎn)P從△ABC的頂點(diǎn)B出發(fā).以每秒2個(gè)單位長(zhǎng)度的速度沿折線BAAC運(yùn)動(dòng).當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí)即停止運(yùn)動(dòng).△ABC也隨之停止平移.

①當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),若△PEF與△MNO相似.求t的值;

②當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí),設(shè),求St的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是菱形ABCD的對(duì)稱(chēng)中心.邊ABx軸平行,點(diǎn)B1-2),反比例函數(shù)k≠0)的圖象經(jīng)過(guò)AC兩點(diǎn).

1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.

2)直線BC與反比例函數(shù)圖象的另一交點(diǎn)為E,求以O,C,E為頂點(diǎn)的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AGF=ABC,1+2=180°.

(1)試判斷BFDE的位置關(guān)系,并說(shuō)明理由;

(2)BFAC,2=150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AD是△ABC的中線,若△ABD與△ACD的周長(zhǎng)分別是1412.△ABC的周長(zhǎng)是20,則AD的長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案