【題目】如圖,△ABC的三邊分別切⊙O于D,E,F(xiàn).
(1)若∠A=40°,求∠DEF的度數(shù);
(2)AB=AC=13,BC=10,求⊙O的半徑.
【答案】(1)70°(2)
【解析】
(1)連OD,OF;先利用三角形的內角和求出∠DOF,再根據(jù)圓周角定理求出角DEF.
(2)過A做AM⊥BC于M,求出BM=BC,則S△ABC=60 ,設圓O的半徑的半徑是r,則
(13+13+10)r=60,求出r即可.
(1)連OD,OF,如圖,
則OD⊥AB,OF⊥AC;
∴∠DOF=180°-∠A=180°-40°=140°,
又∵∠DEF=∠DOF=×140°=70°,
(2)過A做AM⊥BC于M,
∵AB=AC
∴BM=BC=×10=5,
則AM=12
則S△ABC=60 .
設圓O的半徑的半徑是r,則
(13+13+10)r=60,
解得:r=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中∠BAC=90°,D,E分別是AB,BC的中點,F在CA的延長線上∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人們在長期的數(shù)學實踐中總結了許多解決數(shù)學問題的方法,形成了許多光輝的數(shù)學想法,其中轉化思想是中學教學中最活躍,最實用,也是最重要的數(shù)學思想,例如將不規(guī)則圖形轉化為規(guī)則圖形就是研究圖形問題比較常用的一種方法.
問題提出:求邊長分別為、、、的三角形面積.
問題解決:
在解答這個問題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出邊長分別為
、、的格點三角形(如圖),是角邊為1和2的直角三角形斜邊,是直角邊分別為1和3的直角三角形的斜邊,是直角邊分別為2和3的直角三角形斜邊,用一個大長方形的面積減去三個直角三角形的面積,這樣不需求的高,而借用網格就能計算它的面積.
(1)請直接寫出圖①中的面積為____________.
(2)類比遷移:求邊長分別為、、的三角形面積(請利用圖②的正方形網格畫出相應的,并求出它的面積)
(3)思維拓展:求邊長分別為,的三角形的面積
(4)如圖(3),已知,以,為邊向外作正方形,正方形,連接,若,則六邊形 的面積是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D是弦AC的延長線上一點,且CD=AC,DB的延長線交⊙O于點E.
(1)求證:CD=CE;
(2)連結AE,若∠D=25°,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,BC=2AC,半徑為2的⊙C,分別交AC、BC于點D、E,得到.
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形,BD是∠ABC的角平分線,過點D分別作DE⊥AB,DF⊥BC,垂足分別為E、F.
(1)求證:△AED≌△CFD;
(2)若AB=10,BC=8,∠ABC=60°,求BD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,Rt△ABC的頂點均在格點上,在建立平面直角坐標系后,點A的坐標為(-6,1),點B的坐標為(-3,1),點C的坐標為(-3,3).
(1)將原來的Rt△ABC繞點O順時針旋轉90°得到Rt△A1B1C1,試在圖上畫出Rt△A1B1C1的圖形.
(2)求線段BC掃過的面積.
(3)求點A旋轉到A1路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.
(1)如圖,若DF⊥AC,垂足為F,證明:DE=DF
(2)如圖,將(1)中的∠EDF繞點D順時針旋轉一定的角度,DF仍與線段AC相交于點F.DE=DF仍然成立嗎?說明理由。
(3)將∠EDF繼續(xù)繞點D順時針旋轉一定的角度,使DF與線段AC的延長線相交于點F,DE=DF仍然成立嗎? 直接說出結論,不必說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并回答問題.我們知道,,,…,如果兩個含有二次根式的非零代數(shù)式相乘,它們的積不含二次根式,就說這兩個非零代數(shù)式互為有理化因式.如與互為有理化因式,和互為有理化因式.根據(jù)互為有理化因式的積是有理數(shù),可以將分母中含有二次根式的代數(shù)式化為分母是有理數(shù)的代數(shù)式,這個過程稱為分母有理化.例如:.請解答下列問題:
(1)分母有理化的結果是 ;分母有理化的結果是 ;
(2)計算:;
(3)若實數(shù),,判斷和的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com