精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE=90°。

當點D在AC上時,如圖1,線段BD、CE有怎樣的數量關系和位置關系?寫出你猜想的結論,并說明理由;

將圖1中的ADE繞點A順時針旋轉α角(0°α<90°,如圖2,線段BD、CE有怎樣的數量關系和位置關系?請說明理由。

【答案】BD=CE,BDCE,理由見解析;BD=CE,BDCE,理由見解析

【解析】

試題分析:BD=CE,BDCE根據全等三角形的判定定理SAS推知ABD≌△ACE,然后由全等三角形的對應邊相等證得BD=CE、對應角相等ABF=ECA;然后在ABD和CDF中,由三角形內角和定理可以求得CFD=90°,即BDCF;BD=CE,BDCE根據全等三角形的判定定理SAS推知ABD≌△ACE,然后由全等三角形的對應邊相等證得BD=CE、對應角相等ABF=ECA;作輔助線(延長BD交AC于F,交CE于HBH構建對頂角ABF=HCF,再根據三角形內角和定理證得BHC=90°;

試題解析:解:結論:BD=CE,BDCE;理由如下:

ABD與ACE中,

AB=AC,AD=AE,BAC=DAE=90°

ABD≌△ACE(SAS

BD=CE

如圖(1,延長BD交CE于F,

ABD=ACE,ADB=CDF=EAC,

BDCE

結論:BD=CE,BDCE

理由如下:∵∠BAC=DAE=90°

∴∠BAC-DAC=DAE-DAC,即BAD=CAE

ABD與ACE中,

∴△ABD≌△ACE(SAS

BD=CE

如圖(2延長BD交AC于F,交CE于H

ABF與HCF中,

∵∠ABF=HCF,AFB=HFC

∴∠CHF=BAF=90°

BDCE

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(背景知識)數軸上有兩點 A、B 對應的數為 a、b,AB表示這兩個點間的距離,這兩個點的中點所對應的數為.

已知數軸上有三點 A、B、C,對應的數分別為 a、b、c,a、b、c 滿足以下兩個條件:①② a-b+c=0.

(1)求出 a、b、c 的值;

(2)若數軸上有一點 P,PA=3PB,求出滿足條件的P點所對應的數;

(3)點A以每秒鐘2個單位長度的速度向左運動,點B以每秒鐘4個單位長度的速度向右運動,點C以每秒鐘6個單位長度的速度向右運動.它們同時出發(fā),M為AB 的中點,N為BC的中點,Q為AC的中點,O為原點,試求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程或方程組解應用題:

為了響應“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質量為160克,已知每頁薄型紙比厚型紙輕0.8克,求A4薄型紙每頁的質量.(墨的質量忽略不計)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,△ABC在平面直角坐標系中的位置如圖①所示,A點坐標為(﹣4,0),B點坐標為(6,0),點D為AC的中點,點E為線段AB上一動點,連接DE經過點A、B、C三點的拋物線的解析式為y=ax2+bx+8.

(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點A的對稱點為點G,當點G恰好落在拋物線的對稱軸上時,求G點的坐標;
(3)如圖②,當點E在線段AB上運動時,拋物線y=ax2+bx+8的對稱軸上是否存在點F,使得以C、D、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校為了解學生的課外閱讀情況,隨機抽取了50名學生,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數據繪制成如下不完整的統(tǒng)計表.

課外閱讀時間t

頻數

百分比

10≤t30

4

8%

30≤t50

8

16%

50≤t70

a

40%

70≤t90

16

b

90≤t110

2

4%

合計

50

100%

請根據圖表中提供的信息回答下列問題:

1a=   ,b=   ;

(2)將頻數分布直方圖補充完整;

(3)若全校有900名學生,估計該校有多少學生平均每天的課外閱讀時間不少于50min?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知有如下一組單項式:7x3z2,8x3y,x2yz,-3xy2z,9x4zy,zy2,-xyz,9y3z,xz2y,0,3z3.我們用下面的方法確定它們的先后次序:對任兩個單項式,先看x的指數,規(guī)定x的指數高的單項式排在x的指數低的單項式前面;若x的指數相同,則再看y的指數,規(guī)定y的指數高的單項式排在y的指數低的單項式前面;若y的指數也相同,則再看z的指數,規(guī)定z的指數高的單項式排在z的指數低的單項式前面.將這組單項式按上述方法排序,那么,9y3z應排在第幾位?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABCD,分別探究下面兩個圖形中∠APC和∠PAB、∠PCD的關系,請從你所得兩個關系中選出任意一個,說明你探究的結論的正確性.

結論:(1)

(2)

選擇結論: ,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.

(1)求∠DAB的度數.

(2)求四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案