【題目】如圖所示,已知一次函數(shù)的圖象與軸,軸分別交于點(diǎn)、.以為邊在第一象限內(nèi)作等腰,且,.過(guò)作軸于.的垂直平分線交與點(diǎn),交軸于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)在直線上有點(diǎn),且點(diǎn)與點(diǎn)位于直線的同側(cè),使得,求點(diǎn)的坐標(biāo).
(3)在(2)的條件下,連接,判斷的形狀,并給予證明.
【答案】(1);(2);(3)等腰直角三角形,證明見(jiàn)詳解.
【解析】
(1)證,,.
(2)由可知作的一半的面積與相等,可作一條過(guò)AC的中點(diǎn)的平行于AB的直線將會(huì)交于M點(diǎn),證, ,.
(3)E、G分別為的中點(diǎn),知,,,為矩形,,,,可判斷,即可得的形狀.
(1)∵的圖象與軸、軸分別交于點(diǎn)、,
∴可得,
∵,
∴,
∵,
∴,
在與中,
,
∴;
∴,;
∴;
∴
(2)如下圖作一條過(guò)AC的中點(diǎn)H點(diǎn)的平行于AB的直線將會(huì)交于一點(diǎn),由A、C點(diǎn)可得H點(diǎn)坐標(biāo),
∵,
∴,
∴與的高相等,即過(guò)H點(diǎn)的平行于AB的直線將會(huì)交于M點(diǎn)
∵,
∴
∵,
∴,
∴,
如下圖過(guò)H點(diǎn)作的垂線交于I點(diǎn),,得,,
在與中,
,
∴;
∴,
∴;
∴
(3)∵E、G分別為的中點(diǎn),
∴,
∵,
∴為矩形;
∴,,
∵,,,
∴,,得,
∴為等腰直角三角形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)已知E,F分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問(wèn)題:
(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F分別在CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫出證明過(guò)程,若不成立,請(qǐng)說(shuō)明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和BF,若點(diǎn)M,N,P,Q分別為AE,EF,FD,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個(gè)30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價(jià)為40元時(shí),平均每月售出600個(gè);若售價(jià)每上漲1元,其月銷售量就減少20個(gè),若售價(jià)每下降1元,其月銷售量就增加200個(gè).
(1)若售價(jià)上漲m元,每月能售出 個(gè)排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個(gè)該規(guī)格的排球,并決定整個(gè)11月份進(jìn)行降價(jià)促銷,問(wèn)售價(jià)定為多少元時(shí),能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開(kāi)始時(shí)繩子BC的長(zhǎng)為13m,此人以0.5m/s的速度收繩.10s后船移動(dòng)到點(diǎn)D的位置,問(wèn)船向岸邊移動(dòng)了多少m?(假設(shè)繩子是直的,結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF.
其中正確的結(jié)論個(gè)數(shù)有. ( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校決定在4月7日開(kāi)展“世界無(wú)煙日”宣傳活動(dòng),活動(dòng)有A社區(qū)板報(bào)、B集會(huì)演講、C喇叭廣播、D發(fā)宣傳畫四種宣傳方式.學(xué)校圍繞“你最喜歡的宣傳方式是什么?”,在全校學(xué)生中進(jìn)行隨機(jī)抽樣調(diào)查四個(gè)選項(xiàng)中必選且只選一項(xiàng),根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了兩種不完整的統(tǒng)計(jì)圖表.
選項(xiàng) | 方式 | 百分比 |
A | 社區(qū)板報(bào) | m |
B | 集會(huì)演講 | 30% |
C | 喇叭廣播 | 25% |
D | 發(fā)宣傳畫 | 10% |
請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題:
(1)本次抽查的學(xué)生共 人,m= ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該校學(xué)生有900人,請(qǐng)你估計(jì)該校喜歡“集會(huì)演講”這項(xiàng)宣傳方式的學(xué)生約有多少人?
(3)學(xué)校采用抽簽方式讓每班在A、B、C、D四種宣傳方式中隨機(jī)抽取兩種進(jìn)行展示.請(qǐng)用樹(shù)狀圖或列表法求某班所抽到的兩種方式恰好是“集會(huì)演講”和“喇叭廣播”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明想了解全校3000名同學(xué)對(duì)新聞、體育、音樂(lè)、娛樂(lè)、戲曲五類電視節(jié)目的喜愛(ài)況,從中抽取了一部分同學(xué)進(jìn)行了一次抽樣調(diào)查,利用所得數(shù)據(jù)繪制成下面的統(tǒng)計(jì)圖:根據(jù)圖中所給信息,全校喜歡娛樂(lè)類節(jié)目的學(xué)生大約有( )人.
A. 1080 B. 900 C. 600 D. 108
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一面靠墻(墻的最大可用長(zhǎng)度為8 m)的空地上用長(zhǎng)為24 m的籬笆圍成中間隔有二道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x m,面積為S m2.
(1)求S關(guān)于x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求所圍成花圃的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com