【題目】如圖,AB是⊙O的直徑,點P為AB延長線上一點,PC切⊙O于點C,過點B作BE∥PC交⊙O于點E,連接CE,CB.
(1)試判斷△BCE的形狀,并說明理由;
(2)過點C作CD⊥AB于點D交BE于點F,若cosP=,CF=5,求AB的長.
【答案】(1)△BCE為等腰三角形,理由見解析;(2)AB=20
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)得到∠OCP=90°,根據(jù)平行線的性質(zhì)得到OC⊥BE,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論;
(2)連接AC,根據(jù)圓周角定理得到∠ACB=90°,求得∠A=∠DCB,得到∠FCB=∠CBF,根據(jù)等腰三角形的性質(zhì)得到CF=BF=5,根據(jù)勾股定理得到BC=,由射影定理即可得到結(jié)論.
(1)△BCE為等腰三角形,
理由:連接OC,
∵PC切⊙O于點C,
∴∠OCP=90°,
∵BE∥PC,
∴OC⊥BE,
∴
∴∠CBE=∠E,
∴EC=BC,
即△BCE是等腰三角形;
(2)連接AC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠ACD+∠BCD=∠A+∠ACD=90°,
∴∠A=∠DCB,
∵∠E=∠A,
∴∠FCB=∠CBF,
∴CF=BF=5,
∵BE∥PC,
∴∠DBF=∠P,
∴cosP=cos∠DBF=,
∴BD=4,DF=3,CD=8,
∴BC=,
∵∠ACB=90°,CD⊥AB,
∴BC2=ABBD,
∴(4)2=4AB,
∴AB=20.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,點,以線段為直徑作圓,圓心為,直線交于點,連接.
(1)求證:直線是的切線;
(2)點為軸上任意一動點,連接交于點,連接:
①當(dāng)時,求所有點的坐標(biāo) (直接寫出);
②求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,直線分別與、相交于點、.小亮同學(xué)利用尺規(guī)按以下步驟作圖:①以點為圓心,以任意長為半徑作弧交于點,交于點;②分別以、為圓心,以大于長為半徑作弧,兩弧在內(nèi)交于點;③做射線交于點.若,,則的內(nèi)切圓半徑長等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,CD為弦,AB⊥CD于E,連接CO,AD,∠BAD=20°,下列結(jié)論中正確的有( )①CE=OE②∠C=50° ③=④AD=2OE
A.①④B.②③C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.
(1)該班共有 名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點
(1)求拋物線的解析式.
(2)點是拋物線上的一個動點(不與點點重合),過點作直線軸于點,交直線于點.當(dāng)時,求點坐標(biāo);
(3)如圖所示,設(shè)拋物線與軸交于點,在拋物線的第一象限內(nèi),是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x2﹣8x+16﹣m2=0(m≠0)是關(guān)于x的一元二次方程
(1)證明:此方程總有兩個不相等的實數(shù)根;
(2)若等腰△ABC的一邊長a=6,另兩邊長b、c是該方程的兩個實數(shù)根,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=4,動點Q在邊AB上,連接CQ,將△BQC沿CQ所在的直線對折得到△CQN,延長QN交直線CD于點M.
(1)求證:MC=MQ
(2)當(dāng)BQ=1時,求DM的長;
(3)過點D作DE⊥CQ,垂足為點E,直線QN與直線DE交于點F,且,求BQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com