【題目】已知,如圖1,為正方形邊的中點(diǎn),,連接,.
(1)求證:①;
②;
(2)如圖2,若,作,分別交,于點(diǎn),,求的長(zhǎng).
【答案】(1)①見(jiàn)詳解,②見(jiàn)詳解;(2)2
【解析】
(1)①由為正方形邊的中點(diǎn),得BE=,易證DFC~CBE,得,進(jìn)而即可得到結(jié)論;②過(guò)點(diǎn)F作FM⊥AD,垂足為點(diǎn)M,CF=a,則DF=2a,DC=,用含a得代數(shù)式表示出AF的長(zhǎng),進(jìn)而得到AF= AB,即可得到結(jié)論;
(2)過(guò)點(diǎn)F作FM⊥AD,垂足為點(diǎn)M,由第(1)②小題,可知:a=,得到DG=MF=,由余弦函數(shù)的定義得,從而得到DH,AH,EH的長(zhǎng),結(jié)合,即可求解.
(1)①∵為正方形邊的中點(diǎn),
∴BE=,
∵在正方形ABCD中,,
∴∠CDF+∠DCF=90°,∠DCF+∠ECB=90°,
∴∠CDF=∠ECB,
又∵∠DFC=∠CBE=90°,
∴DFC~CBE,
∴=,即:;
②過(guò)點(diǎn)F作FM⊥AD,垂足為點(diǎn)M,
∴FM∥CD,
∴∠MFD=∠CDF,
∴在Rt MFD與Rt CDF中,tan∠MFD=tan∠CDF==,
設(shè)CF=a,則DF=2a,DC=,
∵tan∠MFD==,DF2=MD2+MF2,
∴MD:MF:DF=1:2:,
∴MD==,MF=2MD=,
∵AD= DC=,
∴AM= AD- MD=,
∴AF==,
∵AB=CD=,
∴AF= AB,
∴;
(2)過(guò)點(diǎn)F作FM⊥AD,垂足為點(diǎn)M,
由(1)②小題可知:,即:a=,
∴MF==,AD=AB=CD=8,
∵AB=AF=AD,,FM⊥AD,
∴DG=MF=,
∵cos∠ADH=,
∴DH===10,
∴AH=,
∵AE=AB=4,
∴EH=6-4=2,
∵AB∥CD,
∴,即:,
∴HP=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月17日是我國(guó)第6個(gè)扶貧日,也是第27個(gè)國(guó)際消除貧困日.為組織開(kāi)展好銅陵市2019年扶貧日系列活動(dòng),促進(jìn)我市貧困地區(qū)農(nóng)產(chǎn)品銷售,增加貧困群眾收入,加快脫貧攻堅(jiān)步伐.我市決定將一批銅陵生姜送往外地銷售.現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20箱生姜,且甲種貨車裝運(yùn)1000箱生姜所用車輛與乙種貨車裝運(yùn)800箱生姜所用車輛相等.
(1)求甲、乙兩種貨車每輛車可裝多少箱生姜?
(2)如果這批生姜有1520箱,用甲、乙兩種汽車共16輛來(lái)裝運(yùn),甲種車輛剛好裝滿,乙種車輛最后一輛只裝了40箱,其它裝滿,求甲、乙兩種貨車各有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊邊長(zhǎng)為,點(diǎn)是的內(nèi)心,,繞點(diǎn)旋轉(zhuǎn),分別交線段、于、兩點(diǎn),連接,給出下列四個(gè)結(jié)論:①形狀不變;②的面積最小不會(huì)小于四邊形的面積的四分之一;③四邊形的面積始終不變;④周長(zhǎng)的最小值為.上述結(jié)論中正確的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=2,AD=4,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至矩形EGCF(其中E、G、F分別與A、B、D對(duì)應(yīng)).
(1)如圖1,當(dāng)點(diǎn)G落在AD邊上時(shí),直接寫(xiě)出AG的長(zhǎng)為 ;
(2)如圖2,當(dāng)點(diǎn)G落在線段AE上時(shí),AD與CG交于點(diǎn)H,求GH的長(zhǎng);
(3)如圖3,記O為矩形ABCD對(duì)角線的交點(diǎn),S為△OGE的面積,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勒洛三角形是以等邊三角形每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間作一段弧,三段弧圍成的曲邊三角形,如圖所示,若等邊三角形的邊長(zhǎng)為1,則該勒洛三角形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC、BD交于O點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形OCED為矩形;
(2)在BC上截取CF=CO,連接OF,若AC=16,BD=12,求四邊形OFCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,,頂點(diǎn)C的坐標(biāo)為,x反比例函數(shù)的圖象與菱形對(duì)角線AO交于點(diǎn)D,連接BD,當(dāng)軸時(shí),k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,3個(gè)正方形在⊙O直徑的同側(cè),頂點(diǎn)B、C、G、H都在⊙O的直徑上,正方形ABCD的頂點(diǎn)A在⊙O上,頂點(diǎn)D在PC上,正方形EFGH的頂點(diǎn)E在⊙O上、頂點(diǎn)F在QG上,正方形PCGQ的頂點(diǎn)P也在⊙O上.若BC=1,GH=2,則CG的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分別找一點(diǎn)M,N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)是________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com