【題目】如圖O的半徑為4,BO外一點,連接BO,BO6,延長BOO于點A,DO上一點,過點A作直線BD的垂線AC,垂足為C,連接AD,且AD平分BAC .

1求證:BDO的切線 ;

2AC的長.

【答案】1證明見解析;(2

【解析】

試題分析:(1)連結OD,如圖,由OA=OD1=2,由AD平分BAC1=3,則2=3,于是可判斷ODAC,根據(jù)平行線的性質得ODBD,則根據(jù)切線的判定定理即可得到BCO的切線;

2)利用ODAC得到BOD∽△BAC,然后利用相似比可計算出AC

試題解析:(1)連結OD,如圖,

OA=OD,

∴∠1=2,

AD平分BAC,

∴∠1=3,

∴∠2=3

ODAC,

ACBD,

ODBD,

BCO的切線;

2ODAC,

∴△BOD∽△BAC,

,即,

AC=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)將ABD平移,使D沿BD延長線移至C得到A′B′D′,A′B′交AC于E,AD平分BAC.

(1)猜想B′EC與A′之間的關系,并寫出理由.

(2)如圖將ABD平移至如圖(2)所示,得到A′B′D′,請問:A′D平分B′A′C嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時梯子底部B到墻底端的距離為0.7米,考慮爬梯子的穩(wěn)定性,現(xiàn)要將梯子頂部A沿墻下移0.4米到A1處,問梯子底部B將外移多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的腰和底的長分別是一元二次方程x2﹣6x+8=0的根,則該三角形的周長為( )
A.8
B.10
C.8或10
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式 與m2+m﹣2的和是m2﹣2m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個直角三角形的一條直角邊長是7 cm,另一條直角邊比斜邊短1 cm,則斜邊長 ( )

A. 18 cm B. 20 cm C. 24 cm D. 25 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中,對角線AC、BD交于點O,若BOC=120°,AD=7,BD=10,則平行四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在等腰直角三角形中,AB=AC,點D是斜邊BC上的中點,點E、F分別為ABAC上的點,且DEDF

1)若設BE=aCF=b,滿足+|b﹣5|=+,求BECF的長.

2)求證:BE2+CF2=EF2

3)在(1)的條件下,求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請將下列證明過程補充完整:已知:如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,.

求證:

證明:因為(已知),

又因為 _____________________ ),

所以_______________(等量代換).

所以 _______ ∥______ (同位角相等,兩直線平行),

所以 _____________________ ).

又因為(已知),

所以 _______ ∥______ (_____________________ ).

所以 _______________(兩直線平行,內錯角相等).

所以(_____________________ ).

查看答案和解析>>

同步練習冊答案