【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點(diǎn)A;

(2)若AEBC,BC=2,AC=2,求AD的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)AD=2

【解析】1)如圖,連接OA,根據(jù)同圓的半徑相等可得:∠D=DAO,由同弧所對(duì)的圓周角相等及已知得:∠BAE=DAO,再由直徑所對(duì)的圓周角是直角得:∠BAD=90°,可得結(jié)論;

(2)先證明OABC,由垂徑定理得:,F(xiàn)B=BC,根據(jù)勾股定理計(jì)算AF、OB、AD的長(zhǎng)即可.

(1)如圖,連接OA,交BCF,

OA=OB,

∴∠D=DAO,

∵∠D=C,

∴∠C=DAO,

∵∠BAE=C,

∴∠BAE=DAO,

BD是⊙O的直徑,

∴∠BAD=90°,

即∠DAO+BAO=90°,

∴∠BAE+BAO=90°,即∠OAE=90°,

AEOA,

AE與⊙O相切于點(diǎn)A;

(2)AEBC,AEOA,

OABC,

,F(xiàn)B=BC,

AB=AC,

BC=2,AC=2,

BF=,AB=2,

RtABF中,AF==1,

RtOFB中,OB2=BF2+(OB﹣AF)2,

OB=4,

BD=8,

∴在RtABD中,AD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+x軸交于點(diǎn)A,與y軸交于點(diǎn)C,以AC為直徑作⊙M,點(diǎn)D是劣弧AO上一動(dòng)點(diǎn)(D點(diǎn)與A,C不重合).拋物線y=-x+bx+c經(jīng)過(guò)點(diǎn)A、C,與x軸交于另一點(diǎn)B,

(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);

(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,是︱PA—PC︱的值最大;若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

(3)連CDAO于點(diǎn)F,延長(zhǎng)CDG,使FG=2,試探究當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),直線GA與⊙M相切,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為,.

(Ⅰ)如圖①,當(dāng)點(diǎn)落在邊上時(shí),求點(diǎn)的坐標(biāo);

(Ⅱ)如圖②,當(dāng)點(diǎn)落在線段上時(shí),交于點(diǎn).

求證;

求點(diǎn)的坐標(biāo).

(Ⅲ)記為矩形對(duì)角線的交點(diǎn),的面積,求的取值范圍(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,的幾何意義是數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離,一般地,點(diǎn)A,B在數(shù)軸上分別表示數(shù)a,b,那么A,B之間的距離可表示為|a-b|,請(qǐng)根據(jù)絕對(duì)值的幾何意義并結(jié)合數(shù)軸解答下列問(wèn)題:

1)數(shù)軸上的數(shù)x1所對(duì)應(yīng)的點(diǎn)的距離為________,數(shù)x-1所對(duì)應(yīng)的點(diǎn)的距離為________;

2)求的最大值;

3)直接寫(xiě)出的最大值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的有(

次多項(xiàng)式,次多項(xiàng)式(都是正整數(shù)),則一定都是次多項(xiàng)式;②分式方程無(wú)解,則分式方程去分母后所得的整式方程無(wú)解;③為正整數(shù));④分式的分子和分母都乘以(或除以)同一個(gè)整數(shù),分式的值不變

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,,于點(diǎn)的垂直平分線交于點(diǎn),于點(diǎn),

(1)如圖2,于點(diǎn),于點(diǎn),沿方向平移,得到,連接

①求四邊形的面積;

②直線上有一動(dòng)點(diǎn),周長(zhǎng)的最小值

(2)如圖3.延長(zhǎng)于點(diǎn)過(guò)點(diǎn),過(guò)邊上的動(dòng)點(diǎn),并與交于點(diǎn),沿直線翻折,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在直線,求線段的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,點(diǎn)將對(duì)角線三等分,且,連接.

1)求證:四邊形為菱形

2)求菱形的面積;

3)若是菱形的邊上的點(diǎn),則滿足的點(diǎn)的個(gè)數(shù)是______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是邊長(zhǎng)為1的菱形ABCD對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M,N分別是AB,BC邊上的中點(diǎn),則MP+PN的最小值是( 。

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一個(gè)有理數(shù)轉(zhuǎn)換器(箭頭是數(shù)進(jìn)入轉(zhuǎn)換器的路徑,方框是對(duì)進(jìn)入的數(shù)進(jìn)行轉(zhuǎn)換的轉(zhuǎn)化器)

1)求當(dāng)小明輸入、兩個(gè)數(shù)時(shí)輸出的結(jié)果;

2)當(dāng)輸出的結(jié)果為0時(shí),求輸入的數(shù)值(寫(xiě)兩個(gè)即可);

3)在正數(shù)、0、負(fù)數(shù)中,試探究這個(gè)有理數(shù)轉(zhuǎn)化器不可能輸出的數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案