【題目】如圖,在ABC中,B=40°,C=60°,ADBC于D,AE是BAC的平分線

1DAE的度數(shù);

2寫(xiě)出以AD為高的所有三角形

【答案】110°;2ABC、ABD、ACE、ABE、ADF和ACD

【解析】

試題1根據(jù)三角形的內(nèi)角和定理,可求得BAC的度數(shù),由AE是BAC的平分線,可得EAC的度數(shù);在直角ADC中,可求出DAC的度數(shù),所以DAE=EAC-DAC,即可得出;

2利用三角形的高的性質(zhì)即可得出

試題解析:解:1ABC中,AE是BAC的平分線,且B=40°C=60°,

∴∠BAE=EAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=40°

ACD中,ADC=90°,C=60°,∴∠DAC=180°﹣90°﹣60°=30°

EAD=EAC﹣∠DAC=40°﹣30°=10°

2以AD為高的所有三角形:ABC、ABD、ACE、ABE、ADF和ACD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點(diǎn)在B點(diǎn)的左側(cè))與y軸交于點(diǎn)C.

(1)如圖1,連接AC、BC,若△ABC的面積為3時(shí),求拋物線的解析式;
(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PC,若∠BCP=2∠ABC時(shí),求點(diǎn)P的橫坐標(biāo);
(3)如圖3,在(2)的條件下,點(diǎn)F在AP上,過(guò)點(diǎn)P作PH⊥x軸于H點(diǎn),點(diǎn)K在PH的延長(zhǎng)線上,AK=KF,∠KAH=∠FKH,PF=﹣4 a,連接KB并延長(zhǎng)交拋物線于點(diǎn)Q,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育商店購(gòu)進(jìn)一批甲、乙兩種足球,已知3個(gè)甲種足球的進(jìn)價(jià)與2個(gè)乙種足球的進(jìn)價(jià)的和為142元,2個(gè)甲種足球的進(jìn)價(jià)與4個(gè)乙種足球的進(jìn)價(jià)的和為164元.
(1)求每個(gè)甲、乙兩種足球的進(jìn)價(jià)分別是多少?
(2)如果購(gòu)進(jìn)甲種足球超過(guò)10個(gè),超出部分可以享受7折優(yōu)惠.商場(chǎng)決定在甲、乙兩種足球選購(gòu)其中一種,且數(shù)量超過(guò)10個(gè),試幫助體育商場(chǎng)判斷購(gòu)進(jìn)哪種足球省錢(qián).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列計(jì)算過(guò)程,發(fā)現(xiàn)規(guī)律,利用規(guī)律猜想并計(jì)算:

1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…

(1)猜想:1+2+3+4+…+n=  

(2)利用上述規(guī)律計(jì)算:1+2+3+4+…+200;

(3)嘗試計(jì)算:3+6+9+12+…3n的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用兩種方法證明三角形的外角和等于360°”.

已知:如圖,BAECBF,ACDABC的三個(gè)外角.

求證:∠BAECBFACD=360°.

證法1:________________________________________________________________,

∴∠BAE1+CBF2+ACD3=180°×3=540°,

∴∠BAECBFACD=540°-(1+2+3).

______________,

∴∠BAECBFACD=540°-180°=360°.

請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(0,3)、(﹣4,0),

(1)將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O,B對(duì)應(yīng)點(diǎn)分別是E,F(xiàn),請(qǐng)?jiān)趫D中畫(huà)出△AEF,并寫(xiě)出E、F的坐標(biāo);
(2)以O(shè)點(diǎn)為位似中心,將△AEF作位似變換且縮小為原來(lái)的 ,在網(wǎng)格內(nèi)畫(huà)出一個(gè)符合條件的△A1E1F1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解我市的空氣質(zhì)量情況,某環(huán)保興趣小組從環(huán)境監(jiān)測(cè)網(wǎng)隨機(jī)抽取了若干天的空氣質(zhì)量情況作為樣本進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)計(jì)算被抽取的天數(shù);
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“優(yōu)”的扇形的圓心角度數(shù);
(3)請(qǐng)估計(jì)該市這一年(365天)達(dá)到“優(yōu)”和“良”的總天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

(1)BFCE于點(diǎn)F,交CD于點(diǎn)G(如圖①).求證:AE=CG;

(2)AHCE,垂足為H,交CD的延長(zhǎng)線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案