【題目】如圖,在ABCD中,∠ABC的平分線交AD于點E,延長BE交CD的延長線于F.
(1)若∠F=40°,求∠A的度數(shù);
(2)若AB=10,BC=16,CE⊥AD,求ABCD的面積.
【答案】
(1)
解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠AEB=∠CBF,∠ABE=∠F=40°,
∵∠ABC的平分線交AD于點E,
∴∠ABE=∠CBF,
∴∠AEB=∠ABE=40°,
∴∠A=180°﹣40°﹣40°=100°
(2)
解:∵∠AEB=∠ABE,
∴AE=AB=10,
∵四邊形ABCD是平行四邊形,
∴AD=BC=16,CD=AB=10,
∴DE=AD﹣AE=6,
∵CE⊥AD,
∴CE=8,
∴ABCD的面積=ADCE=16×8=128
【解析】(1)由平行四邊形的性質(zhì)和已知條件得出∠AEB=∠CBF,∠ABE=∠F=40°,證出∠AEB=∠ABE=40°,由三角形內(nèi)角和定理求出結(jié)果即可;(2)求出DE,由勾股定理求出CE,即可得出結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解角平分線的性質(zhì)定理的相關(guān)知識,掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上,以及對平行四邊形的性質(zhì)的理解,了解平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,連接CD.過點C作CE⊥DB,垂足為E,直線AB與CE相交于F點.
(1)求證:CF為⊙O的切線;
(2)當BF=5,時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以頂點B為圓心,邊BC長為半徑畫弧,交AD邊于點E,連結(jié)BE,過C點作CF⊥BE于F.
(1)求證:△ABE≌△FCB;
(2)求EF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;對學習較感興趣;對學習不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與直線:交于點,點的橫坐標為,直線與軸的交點為,將直線向上平移后得到直線,直線剛好經(jīng)過拋物線與軸正半軸的交點和與軸的交點.
(1)直接寫出點和點的坐標,并求出點的坐標;
(2)若點是拋物線第一象限內(nèi)的一個動點,連接,交直線于點,連接和.設(shè)的面積為,當取得最大值時,求出此時點的坐標及的最大值;
(3)如圖,動點以每秒個單位長度的速度從點出發(fā),沿射線運動;同時,動點以每秒個單位長度的速度從點出發(fā),沿射線運動,設(shè)運動時間為().過點作軸,交拋物線于點,當點、、所組成的三角形是直角三角形時,直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com