【題目】如圖,在Rt△ABC中,∠C=30°,將△ABC繞點B旋轉(zhuǎn)α(0<α<60°)到△A′BC′,邊AC和邊A′C′相交于點P,邊AC和邊BC′相交于Q.當△BPQ為等腰三角形時,則α=__________.
【答案】20°或40°
【解析】
過B作BD⊥AC于D,過B作BE⊥A'C'于E,根據(jù)旋轉(zhuǎn)可得△ABC≌△A'BC',則BD=BE,進而得到BP平分∠A'PC,再根據(jù)∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=(180°-∠C'PQ)=90°-θ,分三種情況討論,利用三角形內(nèi)角和等于180°,即可得到關(guān)于θ的方程,進而得到結(jié)果.
如圖,過B作BD⊥AC于D,過B作BE⊥A'C'于E,
由旋轉(zhuǎn)可得,△ABC≌△A'BC',則BD=BE,
∴BP平分∠A'PC,
又∵∠C=∠C'=30°,∠BQC=∠PQC',
∴∠CBQ=∠C'PQ=θ,
∴∠BPQ=(180°-∠C'PQ)=90°-θ,
分三種情況:
①如圖所示,當PB=PQ時,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,
∵∠BPQ+∠PBQ+∠PQB=180°,
∴90°-θ+2×(30°+θ)=180°,
解得θ=20°;
②如圖所示,當BP=BQ時,∠BPQ=∠BQP,
即90°-θ=30°+θ,
解得θ=40°;
③當QP=QB時,∠QPB=∠QBP=90°-θ,
又∵∠BQP=30°+θ,
∴∠BPQ+∠PBQ+∠BQP=2(90°-θ)+30°+θ=210°>180°(不合題意),
故答案為:20°或40°.
科目:初中數(shù)學 來源: 題型:
【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.
(1)在方程①3x-1=0,② ③x-(3x+1)=-5 中,不等組 的關(guān)聯(lián)方程是________
(2)若不等式組 的一個關(guān)聯(lián)方程的根是整數(shù), 則這個關(guān)聯(lián)方程可以是________(寫出一個即可)
(3)若方程 3-x=2x,3+x= 都是關(guān)于 x 的不等式組 的關(guān)聯(lián)方程,直接寫出 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABC 三個頂點的坐標分別為 A(2, 3) 、B(6, 0) 、C(1, 0)
(1)畫ABC ,直接寫出ABC 的面積 ;
(2)若A2 BC 與ABC 面積相等,則滿足條件的點 A2 有 個,它們的橫坐標為 ,縱坐標為 ;
(3)若A3 BC 與ABC 全等,請寫出滿足條件的 A3 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(﹣1,y1),(4,y2)在一次函數(shù)y=3x﹣2的圖象上,則y1 , y2 , 0的大小關(guān)系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=-x+m分別交于x軸、y軸于A,B兩點,已知點C(2,0).
(1)當直線AB經(jīng)過點C時,點O到直線AB的距離是;
(2)設點P為線段OB的中點,連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
∵,,,……,
∴
=
= =.
解答下列問題:
(1)在和式中,第6項為______,第n項是__________.
(2)上述求和的想法是通過逆用________法則,將和式中的各分數(shù)轉(zhuǎn)化為兩個數(shù)之差,使得除首末兩項外的中間各項可以_______,從而達到求和的目的.
(3)受此啟發(fā),請你解下面的方程:
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地的距離是80千米,一輛公共汽車從A地駛出3小時后,一輛小汽車也從A地出發(fā),它的速度是公共汽車的3倍,已知小汽車比公共汽車遲20分鐘到達B地,求兩車的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形是將正三角形按一定規(guī)律排列,第 1 個圖形中所有正三角形的個數(shù)有 1 個,第 2 個圖形中所有正三角形的個數(shù)有 5 個,第 3 個圖形中所有正三角形的個數(shù)有 17 個,則第 5 個圖形中所有正三角形的個數(shù)有( )
A. 160 B. 161 C. 162 D. 163
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com