【題目】下列圖形是將正三角形按一定規(guī)律排列,第 1 個圖形中所有正三角形的個數(shù)有 1 個,第 2 個圖形中所有正三角形的個數(shù)有 5 個,第 3 個圖形中所有正三角形的個數(shù)有 17 個,則第 5 個圖形中所有正三角形的個數(shù)有(

A. 160 B. 161 C. 162 D. 163

【答案】B

【解析】

根據(jù)已知圖形得出后一個圖形中三角形的個數(shù)是前一個圖形中三角形個數(shù)的 3 倍與 2 的和,據(jù)此可得答案.

∵第①個圖形中三角形的個數(shù)為1,

第②個圖形中三角形的個數(shù)5=2+3×1,

第③個圖形中三角形的個數(shù)17=2+3×5,

第④個圖形中三角形的個數(shù)為2+3×17=53,

∴第⑤個圖形中三角形的個數(shù)為2+3×53=161,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=30°,將ABC繞點B旋轉(zhuǎn)α(0<α<60°)到A′BC′,AC和邊A′C′相交于點P,邊AC和邊BC′相交于Q.當(dāng)BPQ為等腰三角形時,則α=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

;

;

;

;

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=|x﹣1|的圖象與性質(zhì)進(jìn)行了探究.下面是小慧的探究過程,請補充完成:

(1)函數(shù)y=|x﹣1|的自變量x的取值范圍是   ;

(2)列表,找出y與x的幾組對應(yīng)值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=   ;

(3)在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;

(4)寫出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點D在邊AB上.

(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;

(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點E在△ABC外部時,EHAB于點H,過點EGEAB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1,0),C(0,﹣3).

(1)求拋物線的解析式;
(2)若點P為第三象限內(nèi)拋物線上的一點,設(shè)△PAC的面積為S,求S的最大值并求出此時點P的坐標(biāo);
(3)設(shè)拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一部記錄片播放了關(guān)于地震的資料及一個有關(guān)地震預(yù)測的討論,一位專家指出:在未來20年,A城市發(fā)生地震的機(jī)會是三分之二

對這位專家的陳述下面有四個推斷:

×20≈13.3,所以今后的13年至14年間,A城市會發(fā)生一次地震;

大于50%,所以未來20年,A城市一定發(fā)生地震;

在未來20年,A城市發(fā)生地震的可能性大于不發(fā)生地震的可能性;

不能確定在未來20年,A城市是否會發(fā)生地震;

其中合理的是(  。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC為等邊三角形,點D、E分別在BCAC上,并且CD=AE,連接AD、BE相交于點N,過點BBMAD于點M.

(1)求證:BE=AD

(2)NE=2,MN=5,求AD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1菱形ABCD,∠ABC=60°,邊長為 3,在菱形內(nèi)作等邊三角形△AEF,邊長為2 ,點E,點F,分別在AB,AC上,以A為旋轉(zhuǎn)中心將△AEF順時針轉(zhuǎn)動,旋轉(zhuǎn)角為α,如圖2

(1)在圖2中證明BE=CF;
(2)若∠BAE=45°,求CF的長度;
(3)當(dāng)CF= 時,直接寫出旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案