【題目】如圖,已知直線軸、軸分別交于點(diǎn),點(diǎn)軸上一動(dòng)點(diǎn),于點(diǎn),點(diǎn)的坐標(biāo)為.

1)求直線的解析式;

2)若,求點(diǎn)的坐標(biāo);

3)當(dāng)軸負(fù)半軸時(shí),連接,分別取、的中點(diǎn)、,連接EFPQ于點(diǎn)G,當(dāng)OQ//BP時(shí),求證:.

【答案】1;(2)點(diǎn)的坐標(biāo)為;(3)見解析.

【解析】

1)根據(jù)待定系數(shù)法得出解析式即可,
2)分兩種情況,利用相似三角形的判定和性質(zhì)解答即可,
3)連接QE,OE,利用相似三角形的判定和性質(zhì)解答即可.

解:(1)∵直線經(jīng)過點(diǎn),

,

∴直線的解析式為.

2)在中,令,則,

由(1)得:,,

中,由勾股定理得:,

,∴,

①當(dāng)點(diǎn)軸的左側(cè)時(shí),如圖1,

,,

,

,

,

,

解得:

∴點(diǎn)的坐標(biāo)為.

②當(dāng)點(diǎn)軸的右側(cè)時(shí),

同①可得:

,

∴點(diǎn)的坐標(biāo)為.

綜上,點(diǎn)的坐標(biāo)為.

3)解法一:如圖2,連接.

中,斜邊邊上的中線,

,同理,,

,即是等腰三角形.

的中線,

,

,

,

,

,

,

.

解法二:如圖3,連接、.

中,斜邊邊上的中線,

,同理,,

,即是等腰三角形,

的中線,

,

,

,

,

,

延長(zhǎng)至點(diǎn),使得:,連接,

的垂直平分線,

,

①,

的中點(diǎn),,

的垂直平分線,

②,

由①②可得:,又,

,

,

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸上,將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA’B’C’的位置.若OB=,∠C=120°,則點(diǎn)B’的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋中裝有4張相同的紙牌,它們分別標(biāo)有數(shù)字12,34.隨機(jī)地摸取出一張紙牌然后放回,在隨機(jī)摸取出一張紙牌,(1)計(jì)算兩次摸取紙牌上數(shù)字之和為5的概率;

2)甲、乙兩個(gè)人進(jìn)行游戲,如果兩次摸出紙牌上數(shù)字之和為奇數(shù),則甲勝;如果兩次摸出紙牌上數(shù)字之和為偶數(shù),則乙勝.這是個(gè)公平的游戲嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M

1)求二次函數(shù)的解析式;

2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點(diǎn)N,使NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費(fèi)者的喜愛.各種品牌相繼投放市場(chǎng).一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬(wàn)元,今年1~5月份,每輛車的銷售價(jià)格比去年降低1萬(wàn)元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價(jià)格是多少萬(wàn)元?設(shè)今年1~5月份每輛車的銷售價(jià)格為x萬(wàn)元.根據(jù)題意,列方程正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于O,B=60°,CD是O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)求證:PA是O的切線;

(2)若AB=4+,BC=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線yx0)上,點(diǎn)B在雙曲線yx0)上,且ABx軸,BCy軸,點(diǎn)Cx軸上,則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD,AB∥CD,∠A=90°AB=1,AD=3,DC=5.點(diǎn)S沿A→B→C運(yùn)動(dòng)到C點(diǎn)停止,以S為圓心,SD為半徑作弧交射線DCT點(diǎn),設(shè)S點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)為x,等腰△DST的面積為y,則yx的函數(shù)圖象應(yīng)為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小明設(shè)計(jì)用手電筒來測(cè)量某古城墻高度的示意圖.在地面上點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知ABBD,CDBD,且測(cè)得AB1.2米,BP1.8米,PD18米,那么該古城墻的高度是( 。

A. 6 B. 8 C. 12 D. 24

查看答案和解析>>

同步練習(xí)冊(cè)答案