【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于第一象限內(nèi)的P( ,8),Q(4,m)兩點,與x軸交于A點.
(1)分別求出這兩個函數(shù)的表達(dá)式;
(2)寫出點P關(guān)于原點的對稱點P'的坐標(biāo);
(3)求∠P'AO的正弦值.
【答案】
(1)解:∵點P在反比例函數(shù)的圖象上,
∴把點P( ,8)代入 可得:k2=4,
∴反比例函數(shù)的表達(dá)式為 ,
∴Q (4,1).
把P( ,8),Q (4,1)分別代入y=k1x+b中,
得 ,
解得 ,
∴一次函數(shù)的表達(dá)式為y=﹣2x+9
(2)解:點P關(guān)于原點的對稱點P'的坐標(biāo)為( ,﹣8)
(3)解:過點P′作P′D⊥x軸,垂足為D.
∵P′( ,﹣8),
∴OD= ,P′D=8,
∵點A在y=﹣2x+9的圖象上,
∴點A( ,0),即OA= ,
∴DA=5,
∴P′A= ,
∴sin∠P′AD= ,
∴sin∠P′AO= .
【解析】(1)根據(jù)P( ,8),可得反比例函數(shù)解析式,根據(jù)P( ,8),Q(4,1)兩點可得一次函數(shù)解析式;(2)根據(jù)中心對稱的性質(zhì),可得點P關(guān)于原點的對稱點P'的坐標(biāo);(3)過點P′作P′D⊥x軸,垂足為D,構(gòu)造直角三角形,依據(jù)P'D以及AP'的長,即可得到∠P'AO的正弦值.
【考點精析】本題主要考查了勾股定理的概念和解直角三角形的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于A(﹣1,0)、B兩點,與y軸交于點C(0,2),拋物線的對稱軸交x軸于點D.
(1)求拋物線的解析式;
(2)求sin∠ABC的值;
(3)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出點P的坐標(biāo);如果不存在,請說明理由;
(4)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時線段EF最長?求出此時E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育老師測量了自己任教的甲、乙兩班男生的身高,并制作了如下不完整的統(tǒng)計圖表.
身高分組 | 頻數(shù) | 頻率 |
152≤x<155 | 3 | 0.06 |
155≤x<158 | 7 | 0.14 |
158≤x<161 | m | 0.28 |
161≤x<164 | 13 | n |
164≤x<167 | 9 | 0.18 |
167≤x<170 | 3 | 0.06 |
170≤x<173 | 1 | 0.02 |
根據(jù)以上統(tǒng)計圖表完成下列問題:
(1)統(tǒng)計表中m= , n= , 并將頻數(shù)分布直方圖補(bǔ)充完整;
(2)在這次測量中兩班男生身高的中位數(shù)在:范圍內(nèi);
(3)在身高≥167cm的4人中,甲、乙兩班各有2人,現(xiàn)從4人中隨機(jī)推選2人補(bǔ)充到學(xué)校國旗護(hù)衛(wèi)隊中,請用列表或畫樹狀圖的方法求出這兩人都來自相同班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結(jié)論:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF , 其中正確的是( )
A.①③
B.②③
C.①④
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點,四邊形ABCO是矩形,點A,C的坐標(biāo)分別是A(0,2)和C(2 ,0),點D是對角線AC上一動點(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點B的坐標(biāo)為;
(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證: = ;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級一班開展了“讀一本好書”的活動,班委會對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個類型,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | 1 |
根據(jù)圖表提供的信息,解答下列問題:
(1)八年級一班有多少名學(xué)生?
(2)請補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一條長為40cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.
(1)要使這兩個正方形的面積之和等于52cm2 , 那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com