精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在正方形網格中,點A、B、C、M、N都在格點上(不寫作法)

(1)ABC關于直線MN對稱的A’B’C’:

(2)ABC向上平移兩個單位得A1B1C1,畫出A1B1C1;

(3)在直線MN上找一點P,使AP+CP的值最。

(4)若網格中最小正方形的邊長為1,直接寫出ABC的面積.

【答案】(1)作圖見解析;(2)作圖見解析;()作圖見解析;(4)3.

【解析】

(1)首先確定A、B、C三點關于MN對稱的對稱點位置,再連接即可.

(2)首先確定A1、B1、C1三點再連接即可.

(3)連結AC′CA′MN交于點P,則點P為所找的點.

(4)利用三角形AB為底邊,再確定高,即可求出面積.

(1)如圖,△A′B′C′為所作的圖形.

(2)如圖,△A1B1C1為所畫的圖形.

(3)連結AC′或CA′與MN交于點P,則點P為所找的點.

(4) ×3×2=3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若關于x的不等式x﹣ <1的解集為x<1,則關于x的一元二次方程x2+ax+1=0根的情況是(
A.有兩個相等的實數根
B.有兩個不相等的實數根
C.無實數根
D.無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩同心圓的圓心為O,大圓的弦AB與小圓相切于點P,已知兩圓的半徑分別為2和1,用陰影部分圍成一個圓錐(OA與OB重合),則該圓錐的底面半徑是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現對他們進行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:

甲、乙射擊成績統(tǒng)計表

平均數

中位數

方差

命中10環(huán)的次數

7

1

(1)請補全上述圖表(請直接在表中填空和補全折線圖);

(2)如果規(guī)定成績較穩(wěn)定者勝出,你認為誰將勝出?說明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據圖表中的信息,應該制定怎樣的評判規(guī)則?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校準備舉行社團活動,需要向商家購買A,B兩種型號的文化衫50件,己知一件A型號文化衫的售價比一件B型號文化衫的售價貴9元,用200元恰好可以買到2A型號文化衫和SB型號文化杉.

(1)A、B兩種型號的文化衫每件的價格分別為多少元?

(2)如果用于購買A、B兩種型號文化杉的金額不少于1500元但不超過1530元,請體求出所有的購買方案?

(3)試問在(2)的條件下,學校采用哪種購買方案花錢最少?最少是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料: 如圖1,圓的概念:在平面內,線段PA繞它固定的一個端點P旋轉一周,另一個端點A所形成的圖形叫做圓.就是說,到某個定點等于定長的所有點在同一個圓上,圓心在P(a,b),半徑為r的圓的方程可以寫為:(x﹣a)2+(y﹣b)2=r2 , 如:圓心在P(2,﹣1),半徑為5的圓方程為:(x﹣2)2+(y+1)2=25

(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為
②以B(﹣1,﹣2)為圓心, 為半徑的圓的方程為
(2)根據以上材料解決下列問題: 如圖2,以B(﹣6,0)為圓心的圓與y軸相切于原點,C是⊙B上一點,連接OC,作BD⊥OC垂足為D,延長BD交y軸于點E,已知sin∠AOC=

①連接EC,證明EC是⊙B的切線;
②在BE上是否存在一點P,使PB=PC=PE=PO?若存在,求P點坐標,并寫出以P為圓心,以PB為半徑的⊙P的方程;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電視臺在它的娛樂性節(jié)目中每期抽出兩名場外幸運觀眾,有一期甲、乙兩人被抽為場外幸運觀眾,他們獲得了一次抽獎的機會,在如圖所示的翻獎牌的正面4個數字中任選一個,選中后翻開,可以得到該數字反面的獎品,第一個人選中的數字第二個人不能再選擇了.
(1)如果甲先抽獎,那么甲獲得“手機”的概率是多少?
(2)小亮同學說:甲先抽獎,乙后抽獎,甲、乙兩人獲得“手機”的概率不同,且甲獲得“手機”的概率更大些.你同意小亮同學的說法嗎?為什么?請用列表或畫樹狀圖分析.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動,讓扇形COD繞點O逆時針旋轉,線段AC、BD也隨之變化,設旋轉角為α.(0<α≤360°)
(1)當OC∥AB時,旋轉角α=度;
(2)線段AC與BD有何數量關系,請僅就圖2給出證明.
(3)當A、C、D三點共線時,求BD的長.
(4)P是線段AB上任意一點,在扇形COD的旋轉過程中,請直接寫出線段PC的最大值與最小值.

查看答案和解析>>

同步練習冊答案