【題目】如圖1,已知中,,,,它在平面直角坐標系中位置如圖所示,點在軸的負半軸上(點在點的右側(cè)),頂點在第二象限,將沿所在的直線翻折,點落在點位置
(1)若點坐標為時,求點的坐標;
(2)若點和點在同一個反比例函數(shù)的圖象上,求點坐標;
(3)如圖2,將四邊形向左平移,平移后的四邊形記作四邊形,過點的反比例函數(shù)的圖象與的延長線交于點,則在平移過程中,是否存在這樣的,使得以點為頂點的三角形是直角三角形且點在同一條直線上?若存在,求出的值;若不存在,請說明理由
【答案】(1);(2);(3)存在,或
【解析】
(1)過點作軸于點,利用三角函數(shù)值可得出,再根據(jù)翻折的性質(zhì)可得出,,再解,得出,,最后結合點C的坐標即可得出答案;
(2)設點坐標為(),則點的坐標是,利用(1)得出的結果作為已知條件,可得出點D的坐標為,再結合反比例函數(shù)求解即可;
(3)首先存在這樣的k值,分和兩種情況討論分析即可.
解:(1)如圖,過點作軸于點
∵,
∴
∴
由題意可知,.
∴.
∴
在中,,
∴,.
∵點坐標為,
∴.
∴點的坐標是
(2)設點坐標為(),則點的坐標是,
由(1)可知:點的坐標是
∵點和點在同一個反比例函數(shù)的圖象上,
∴.解得.
∴點坐標為
(3)存在這樣的,使得以點,,為頂點的三角形是直角三角形
解:①當時.
如圖所示,連接,,,與相交于點.
則,,.
∴∽
∴
∴
又∵,
∴∽.
∴,,
∴.
∴,
設(),則,
∵,在同一反比例函數(shù)圖象上,
∴.解得:.
∴
∴
②當時.如圖所示,連接,,,
∵,
∴.
在中,
∵,,
∴.
在中,
∵,
∴.
∴
設(),則
∵,在同一反比例函數(shù)圖象上,
∴.
解得:,
∴
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將正方形繞點逆時針旋轉(zhuǎn)后得到正方形,依此方式,繞點連續(xù)旋轉(zhuǎn)2019次得到正方形,如果點的坐標為(1,0),那么點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.
(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;
(2)求乙所拿的兩袋垃圾不同類的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某化工廠要在規(guī)定時間內(nèi)搬運1200噸化工原料.現(xiàn)有,兩種機器人可供選擇,已知型機器人比型機器人每小時多搬運30噸型,機器人搬運900噸所用的時間與型機器人搬運600噸所用的時間相等.
(1)求兩種機器人每小時分別搬運多少噸化工原料.
(2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,型機器人又有了新的搬運任務需離開,但必須保證這批化工原料在11小時內(nèi)全部搬運完畢.問型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=∠AOC,且AD=CD,則圖中陰影部分的面積等于______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形AOBC放置在平面直角坐標系xOy中,邊OA在y軸的正半軸上,邊OB在x軸的正半軸上,拋物線的頂點為F,對稱軸交AC于點E,且拋物線經(jīng)過點A(0,2),點C,點D(3,0).∠AOB的平分線是OE,交拋物線對稱軸左側(cè)于點H,連接HF.
(1)求該拋物線的解析式;
(2)在x軸上有動點M,線段BC上有動點N,求四邊形EAMN的周長的最小值;
(3)該拋物線上是否存在點P,使得四邊形EHFP為平行四邊形?如果存在,求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結論:①abc>0;②2a+b=0;③a﹣b+c>0;④當x≠1時,a+b>ax2+bx;⑤4ac<b2.其中正確的有( 。﹤
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com