【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結(jié)論正確的個數(shù)是( )
A.3
B.4
C.1
D.2
【答案】A
【解析】
首先連接BD,易證得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.
連接BD,
∵四邊形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,
,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故①正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴②正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故④正確;
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF,
故③錯誤.
綜上所述,結(jié)論正確的是①②④.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂總D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(結(jié)果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
(1)求∠BCD的度數(shù).
(2)求教學樓的高BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:至少有一組對邊相等的四邊形為“等對邊四邊形”.
(1)請寫出一個你學過的特殊四邊形中是“等對邊四邊形”的名稱;
(2)如圖1,四邊形ABCD是“等對邊四邊形”,其中AB=CD,邊BA與CD的延長線交于點M,點E、F是對角線AC、BD的中點,若∠M=60°,求證:EFAB;
(3)如圖2.在△ABC中,點D、E分別在邊AC、AB上,且滿足∠DBC=∠ECB∠A,線段CE、BD交于點.
①求證:∠BDC=∠AEC;
②請在圖中找到一個“等對邊四邊形”,并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知P(1,1).過點P分別向x軸和y軸作垂線,垂足分別為A,B.
(1)點Q在直線AP上且與點P 的距離為2,則點Q的坐標為 ,三角形BPQ的面積是______;
(2)平移三角形ABP,若頂點P平移后的對應點為(4,3),
①畫出平移后的三角形;
②直接寫出四邊形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點O為對角線AC的中點,過O點的射線OM,ON分別交AB,BC于點E,F,且∠EOF=90°,BO,EF交于點P,則下面結(jié)論:
①圖形中全等的三角形只有三對;②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BE+BF=OA.
其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】開展“創(chuàng)衛(wèi)”活動,某校倡議學生利用雙休日在“人民公園”參加義務勞動,為了解同學們勞動情況,學校隨機調(diào)查了部分同學的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題:
(1)將條形統(tǒng)計圖補充完整;
(2)求抽查的學生勞動時間的眾數(shù)、中位數(shù);
(3)電視臺要從參加義務勞動的學生中隨機抽取1名同學采訪,抽到時參加義務勞動的時間為2小時的同學概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把八個等圓按相鄰兩兩外切擺放,其圓心連線構成一個正八邊形,設正八邊形內(nèi)側(cè)八個扇形(無陰影部分)面積之和為S1 , 正八邊形外側(cè)八個扇形(有陰影部分)面積之和為S2 , 則 =( )
A.
B.
C.
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com