【題目】已知關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根x1,x2

1)求實(shí)數(shù)k的取值范圍;

2)是否存在實(shí)數(shù)k使得成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】12)不存在

【解析】

1)由題意可得△≥0,即[﹣(2k+1]24k2+2k≥0,通過(guò)解該不等式即可求得k的取值范圍;

2)假設(shè)存在實(shí)數(shù)k使得x1·x2-x12-x22≥0成立.由根與系數(shù)的關(guān)系可得x1+x2=2k+1,x1·x2=k2+2k,然后利用完全平方公式可以把x1·x2-x12-x22≥0轉(zhuǎn)化為3x1·x2-x1+x22≥0的形式,通過(guò)解不等式可以求得k的值.

1原方程有兩個(gè)實(shí)數(shù)根,

∴△≥0

[﹣(2k+1]24k2+2k≥0,

∴4k2+4k+14k28k≥0 ,

∴14k≥0,

∴k≤

當(dāng)k≤時(shí),原方程有兩個(gè)實(shí)數(shù)根;

2)假設(shè)存在實(shí)數(shù)k使得x1·x2-x12-x22≥0成立,

∵x1,x2是原方程的兩根,

∴x1+x2=2k+1,x1·x2=k2+2k,

x1·x2-x12-x22≥0

3x1·x2-x1+x22≥0

∴3k2+2k)﹣(2k+12≥0

整理得:﹣(k12≥0,

只有當(dāng)k=1時(shí),上式才能成立;

由(1)知k≤,

不存在實(shí)數(shù)k使得x1·x2-x12-x22≥0成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,點(diǎn)DBC中點(diǎn),將ABD繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)50°,記點(diǎn)D在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng)為m,將ABD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)100°,則點(diǎn)D在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng)為________.(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,,,,以三邊分別向外作三個(gè)正方形,連接各點(diǎn),得到六邊形DEFGHI,則六邊形DEFGHI的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu).經(jīng)調(diào)查:購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備多花萬(wàn)元,購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備少花萬(wàn)元.

1)求甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格;

2)該公司經(jīng)決定購(gòu)買甲型設(shè)備不少于臺(tái),預(yù)算購(gòu)買節(jié)省能源的新設(shè)備資金不超過(guò)萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買方案;

3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是二次函數(shù)圖象的一部分,在下列結(jié)論中:①;②;③有兩個(gè)相等的實(shí)數(shù)根;④;其中正確的結(jié)論有( 。

A.1個(gè)B.2 個(gè)C.3 個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】聊城流傳著一首家喻戶曉的民謠:“東昌府,有三寶,鐵塔、古樓、玉皇皋.”被人們譽(yù)為三寶之一的鐵塔,初建年代在北宋早期,是本市現(xiàn)存最古老的建筑.如圖,測(cè)繪師在離鐵塔10米處的點(diǎn)C測(cè)得塔頂A的仰角為α,他又在離鐵塔25米處的點(diǎn)D測(cè)得塔頂A的仰角為β,若tanαtanβ=1,點(diǎn)D,CB在同一條直線上,那么測(cè)繪師測(cè)得鐵塔的高度約為(參考數(shù)據(jù): ≈3.162)(  )

A. 15.81米 B. 16.81米 C. 30.62米 D. 31.62米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)與二次函數(shù)的大致圖象是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線lx軸相交于點(diǎn)M(3,0),與y軸相交于點(diǎn)N(0,4),點(diǎn)AMN的中點(diǎn),反比例函數(shù)y=(x0)的圖象過(guò)點(diǎn)A.

(1)求直線l和反比例函數(shù)的解析式;

(2)在函數(shù)y=(k0)的圖象上取異于點(diǎn)A的一點(diǎn)C,作CBx軸于點(diǎn)B,連接OC交直線l于點(diǎn)P,若△ONP的面積是△OBC面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab0a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案