【題目】如圖,二次函數(shù)的圖象過點,對稱軸為直線,給出以下結(jié)論:①;②;③:④若為函數(shù)圖象上的兩點,則.其中正確的是( 。
A.①②④B.①②③C.①③④D.①②③④
【答案】B
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解:∵拋物線開口向下,
a<0;
∵拋物線的對稱軸為直線x=-=1>0,
∴b>0;
∵拋物線與y軸的交點在x軸上方,
∴c>0,
∴abc<0,故①正確;
∵拋物線與x軸有兩個交點,
∴b2-4ac>0,故②正確;
∵拋物線的對稱軸是x=1,與x軸的一個交點是(3,0),
∴拋物線與x軸的另個交點是(-1,0),
∴當(dāng)x=1時,y最大,即a+b+c≥ax2+bx+c,故③正確;
∵B(x2+1,y1)、C(x2+2,y2)在對稱軸右側(cè),x2+1<x2+2,
∴y1>y2,故④錯誤;
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+1與圖數(shù)y=的限象交于A(﹣2,a),B兩點.
(1)寫出a,k的值________;
(2)已知點P(0,n),過點P作平行于x軸的直線l,交函數(shù)y=的圖象于點 C(x1, y1),交直線 y=﹣x+1的圖象于點 D(x2,y2),若|x1|≤|x2|,結(jié)合函數(shù)圖象,請寫出 m的取值范圍________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E是BC邊的中點, F是CD邊上的一點, 且DF=1.若M、N分別是線段AD、AE上的動點,則MN+MF的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展“陽光體育”活動,并開設(shè)了跳繩、足球、籃球、跑步四種運動項目,為了解學(xué)生最喜愛哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)該校共有3000名學(xué)生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文昌西路改建工程指揮部要對某路段工程進行招標(biāo),接到了甲、乙兩個工程隊的投標(biāo)書.從投標(biāo)書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天可以完成.
(1)求甲、乙兩隊單獨完成這項工程各需要多少天?
(2)已知甲隊每天的施工費用為0.84萬元,乙隊每天的施工費用為0.56萬元,工程預(yù)算的施工費用為50萬元.為縮短工期以減少對住戶的影響,擬安排甲、乙兩隊合作完成這項工程,則工程預(yù)算的施工費用是否夠用?若不夠用,需追加預(yù)算多少萬元?請給出你的判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個三角形紙片,其中,分別是邊上的點,連接.
(1)如圖,若將紙片的一角沿折疊,折疊后點落在邊上的點處,且使S四邊形ECBF,求的長;
(2)如圖,若將紙片的一角沿折疊,折疊后點落在邊上的點處,且使.試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用1塊A型鋼板可制成2塊C型鋼板和1塊D型鋼板;用1塊B型鋼板可制成1塊C型鋼板和3塊D型鋼板.現(xiàn)準(zhǔn)備購買A、B型鋼板共100塊,并全部加工成C、D型鋼板.要求C型鋼板不少于120塊,D型鋼板不少于250塊,設(shè)購買A型鋼板x塊(x為整數(shù)).
(1)求A、B型鋼板的購買方案共有多少種?
(2)出售C型鋼板每塊利潤為100元,D型鋼板每塊利潤為120元.若將C、D型鋼板全部出售,請你設(shè)計獲利最大的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ABC=90°,D為BC邊的中點,BE⊥AD于點E,交AC于F,若AB=4,BC=6,則線段EF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC與△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.
提出問題:如圖1,當(dāng)∠ADB=∠ACB=90°時,求證:AD=BC;
類比探究:如圖2,當(dāng)∠ADB≠∠ACB時,AD=BC是否還成立?并說明理由.
綜合運用:如圖3,當(dāng)β=18°,BC=1,且AB⊥BC時,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com