【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:

abc>0;b>a+c;9a+3b+c>0; c<-3a; a+b≥m(am+b),其中正確的有( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

【答案】B

【解析】根據(jù)拋物線的開口方向、x=-1、x=3時(shí)的函數(shù)值小于0、對(duì)稱軸x=-=1及函數(shù)的最大值逐一判斷可得.

∵拋物線開口向下,

a<0,

->0,

b>0,

∵拋物線與y軸的交點(diǎn)在x軸的上方,

c>0,

abc<0,

∴結(jié)論①錯(cuò)誤;

∵當(dāng)x=-1時(shí),y=a-b+c<0,即b>a+c,

∴結(jié)論②正確;

∵當(dāng)x=-1x=3時(shí),函數(shù)值相等,均小于0,

y=9a+3b+c<0,

∴結(jié)論③錯(cuò)誤;

x=-=1,

b=-2a,

x=-1時(shí),y=a-b+c<0a+2a+c<0,即c<-3a,

∴④正確;

由圖象知當(dāng)x=1時(shí)函數(shù)取得最大值,

am2+bm+c≤a+b+c,即a+b≥m(am+b),

故⑤正確;

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點(diǎn)O,點(diǎn)M、點(diǎn)N分別是線段AD、BE的中點(diǎn).

1)證明: AD=BE.2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某校九年級(jí)(1)20名學(xué)生某次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)統(tǒng)計(jì)表:

成績(jī)()

60

70

80

90

100

人數(shù)()

1

5

x

y

2

(1)若這20名學(xué)生成績(jī)的平均分?jǐn)?shù)為82分,求xy的值;

(2)(1)的條件下,設(shè)這20名學(xué)生本次測(cè)驗(yàn)成績(jī)的眾數(shù)為a,中位數(shù)為b,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小江去商店購(gòu)買簽字筆和筆記本(簽字筆的單價(jià)相同,筆記本的單價(jià)相同).若購(gòu)買20支簽字筆和15本筆記本,則他身上的錢會(huì)不足25元;若購(gòu)買19支簽字筆和13本筆記本,則他身上的錢會(huì)剩下15元.若小江購(gòu)買17支簽字筆和9本筆記本,則( )

A.他身上的錢會(huì)不足95 B.他身上的錢會(huì)剩下95

C.他身上的錢會(huì)不足105 D.他身上的錢會(huì)剩下105

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面兩個(gè)統(tǒng)計(jì)圖反映的是甲、乙兩所學(xué)校三個(gè)年級(jí)的學(xué)生在各校學(xué)生總?cè)藬?shù)中的占比情況,下列說(shuō)法錯(cuò)誤的是(

A.甲校中七年級(jí)學(xué)生和八年級(jí)學(xué)生人數(shù)一樣多B.乙校中七年級(jí)學(xué)生人數(shù)最多

C.乙校中八年級(jí)學(xué)生比九年級(jí)學(xué)生人數(shù)少D.甲、乙兩校的九年級(jí)學(xué)生人數(shù)一樣多

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, ABC中,CDABD,BD: AD:CD=2:3:4,

(1)試說(shuō)明△ABC是等腰三角形;

(2)已知SABC=40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(),若△DMN的邊與BC平行,求t的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,點(diǎn)A,B的坐標(biāo)分別為(-2,0),(10).同時(shí)將點(diǎn)A ,B先向左平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到點(diǎn)AB的對(duì)應(yīng)點(diǎn)依次為C,D,連接CDAC, BD

1)寫出點(diǎn)C D 的坐標(biāo);

2)在 y 軸上是否存在點(diǎn)E,連接EA ,EB,使SEAB=S四邊形ABDC?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由;

3)點(diǎn) P 是線段 AC 上的一個(gè)動(dòng)點(diǎn),連接 BP , DP ,當(dāng)點(diǎn) P 在線段 AC 上移動(dòng)時(shí)(不與 A , C 重合),直接寫出CDP 、ABP BPD 之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABACDBC邊上的中點(diǎn),連結(jié)AD,BE平分∠ABCAC于點(diǎn)E,過點(diǎn)EEFBCAB于點(diǎn)F.

1)若∠C36°,求∠BAD的度數(shù);

2)求證:FBFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案