【題目】如圖,在△ABC中,ABAC,DBC邊上的中點(diǎn),連結(jié)AD,BE平分∠ABCAC于點(diǎn)E,過點(diǎn)EEFBCAB于點(diǎn)F.

1)若∠C36°,求∠BAD的度數(shù);

2)求證:FBFE.

【答案】(1)54° (2)證明見解析

【解析】

1ABAC,則△ABC中為等腰三角形,求出∠BAC的度數(shù),DBC邊上的中點(diǎn),再根據(jù)三選合一求出∠BAD的度數(shù)即可;(2)由BE平分∠ABC,和EF∥BC,轉(zhuǎn)換得到∠FBE∠FEB,即可證明.

1)解:∵ABAC,

∴∠C=∠ABC

∵∠C36°,

∴∠ABC36°,

BDCD,ABAC

ADBC

∴∠ADB90°,

∴∠BAD90°﹣36°=54°

2)證明:∵BE平分∠ABC

∴∠ABE=∠CBEABC,

EFBC,

∴∠FEB=∠CBE,

∴∠FBE=∠FEB

FBFE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在不等邊,,垂足為M,,垂足為N,,點(diǎn)QAC,,下列結(jié)論:

,

,

平分,

平分,

,其中正確的個(gè)數(shù)有()

A. 5個(gè)B. 4個(gè)C. 3個(gè)D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:

abc>0;b>a+c;9a+3b+c>0; c<-3a; a+b≥m(am+b),其中正確的有( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是按照一定規(guī)律畫出的一列“樹型”圖:

經(jīng)觀察可以發(fā)現(xiàn):圖(2)比圖(1)多出2個(gè)“樹枝”,圖(3)比圖(2)多出5個(gè)“樹枝”,圖(4)比圖(3)多出10個(gè)“樹枝”,照此規(guī)律,圖(7)比圖(6)多出_____個(gè)“樹枝”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足千克數(shù)分別用正,負(fù)數(shù)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值(單位:千克)

0

1

2.5

筐數(shù)

1

4

2

3

2

8

120筐白菜中,最重的一筐比最輕的一筐多重多少千克?

2)與標(biāo)準(zhǔn)質(zhì)量比較,20筐白菜總計(jì)超過或不足多少千克?

3)若白菜每千克售價(jià)2.8元,則出售這20筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為  ,線段AD、BE之間的關(guān)系  

(2)拓展探究:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCEDE邊上的高,連接BE.①請判斷∠AEB的度數(shù),并說明理由;②當(dāng)CM=5時(shí),ACBE的長度多6時(shí),求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠ACB=90°,ABC的角平分線AD、BE相交于點(diǎn)P,過PPFADBC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;BF=BA;PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個(gè)邊長為的大正方形,剪去一個(gè)邊長為的小正方形后,得到圖①,稱之為“前世”,然后再剪拼成一個(gè)新長方形即圖②,稱之為“今生”,請你解答下面的問題:

1)“前世”圖①的面積與“今生”圖②新長方形的面積______

2)根據(jù)圖形面積的和差關(guān)系直接寫出“前世”圖①的面積為_______,標(biāo)明“今生”圖②新長方形的長為______、寬為_______、面積為_______;

3)“形缺數(shù)時(shí)少直觀,數(shù)缺形時(shí)少形象”它體現(xiàn)了數(shù)學(xué)的數(shù)形結(jié)合思想,由(1)和(2)圖形面積的計(jì)算,形象地驗(yàn)證了代數(shù)中的一個(gè)乘法公式:______

4)利用本題所得公式計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,O、D分別是邊AC、AB的中點(diǎn),過點(diǎn)CCEABDO的延長線于點(diǎn)E,連接AE.

(1)求證:四邊形AECD是菱形;

(2)若四邊形AECD的面積為24,tanBAC=,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案