【題目】已知:如圖,在△ABC中,AB=AC,ADBC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點(diǎn)E,

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

【答案】1)(2)見解析

【解析】

試題(1)求出∠BAD=DAC,MAE=CAE,求出∠DAE的度數(shù),求出∠AEC=ADC=EAD=90°,根據(jù)矩形的判定判斷即可;

(2)求出AD=DC,得出∠ACD=DAC=45°,求出∠BAC=90°,即可求出答案.

試題解析:(1)證明:∵在ABC中,AB=AC,ADBC,

∴∠BAD=DAC,

ANABC外角∠CAM的平分線,

∴∠MAE=CAE.

∴∠DAE=DAC+CAE=MAC+CAB=×180°=90°,

又∵ADBC,CEAN,

∴∠ADC=CEA=90°,

∴四邊形ADCE為矩形.

(2)證明:∵四邊形ADCE是正方形,

DC=AD,

∵在ABC中,AB=AC,ADBC,

∴△ADC為等腰直角三角形,

∴∠DAC=ACD=45°,

∴∠BAC=90°,

∴△ABC為等腰直角三角形,

ABC的形狀是等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學(xué)生就餐。

(1)1個大餐廳和1個小餐廳分別可供多少名學(xué)生就餐?

(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是下列方程中哪一個方程的解(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形A的邊長是1.

(1)若設(shè)圖中最大正方形B的邊長是x,請用含x的代數(shù)式分別表示出:

正方形F的邊長= ;正方形E的邊長= ;正方形C的邊長= ;

(2)觀察圖形的特點(diǎn)可知,長方形相對的兩邊是相等的(如圖中的MN=PQ).根據(jù)等量關(guān)系可求出x= ;

(3)現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙2個工程隊(duì)單獨(dú)鋪設(shè)分別需要10天、15天完成.如果兩隊(duì)從同一點(diǎn)開始,沿相反的方向同時施工2天后,因甲隊(duì)另有任務(wù),余下的工程由乙隊(duì)單獨(dú)施工,試問乙還要多少天完成?甲、乙2個工程隊(duì)各鋪設(shè)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景)如圖(a),ABCADE均是頂角為40°的等腰三角形,BC,DE分別是底邊,求證:BD=CE.

(探究)如圖(b),ACBDCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.

①∠AEB的度數(shù)為________;②線段BEAD之間的數(shù)量關(guān)系是________.

(拓展)如圖(c),ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)A,D,E在同一直線上,CMDCEDE邊上的高,連接BE.

①求∠AEB的度數(shù);

②請直接寫出線段CM,AE,BE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD的頂點(diǎn)A在第三象限,對角線AC的中點(diǎn)在坐標(biāo)原點(diǎn),一邊AB與x軸平行且AB=2,若點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次綜合實(shí)踐活動中,小明要測某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長BC為80m.她先測得∠BCA=35°,然后從C點(diǎn)沿AC方向走30m到達(dá)D點(diǎn),又測得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計(jì),結(jié)果用含非特殊角的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個小組同時從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為x千米/小時,根據(jù)題意可列方程是( 。
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式2x﹣1> ,并把它的解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習(xí)冊答案