【題目】根據(jù)題意,在橫線上寫出相應(yīng)的函數(shù)關(guān)系式,并判斷y是否為x的反比例函數(shù)(就在后面的空格內(nèi)打“1”,不是就在后面的空格內(nèi)打“0”):

1)長方形的面積Scm2)一定,它的長ycm)與寬xcm)之間的關(guān)系式為 ________

2)正方形的對角線長ycm)與它的邊長xcm)之間的關(guān)系式為 ________

3)一種商品的單價(jià)為a(元/件),所花費(fèi)的錢數(shù)y(元)與購買的件數(shù)x(件)的關(guān)系式為 ________

4)小明的家與學(xué)校相距2400m,他騎自行車上學(xué)的速度vm/s)與所需時(shí)間ts)的關(guān)系式為 ________

【答案】y= ,1 y=x(x>0),0 y=ax,0 v=1

【解析】

1)長方形的長=面積÷寬,面積一定,故長與寬是反比例函數(shù)關(guān)系;

2)根據(jù)勾股定理可得:正方形的對角線長2=2邊長2,∴正方形的對角線長邊長,常數(shù)是,不是反比例函數(shù);

3)總價(jià)=單價(jià)×數(shù)量,單價(jià)一定,不是反比例函數(shù);

4)速度=路程÷時(shí)間,路程一定,是反比例函數(shù).

1)由題意得:y,是反比例關(guān)系;

2)由題意得:yxx0),不是反比例關(guān)系;

3)由題意得:y=ax,不是反比例關(guān)系;

4)由題意得:v,是反比例關(guān)系.

故本題答案為:(1y1;(2yxx0),0;(3y=ax,0;(4v,1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)的拋物線的對稱軸是,點(diǎn)是拋物線與軸的一個(gè)交點(diǎn),點(diǎn)軸上,點(diǎn)是拋物線的頂點(diǎn).

1)求、的值;

2)當(dāng)是直角三角形時(shí),求的面積;

3)設(shè)點(diǎn)在直線下方且在拋物線上,點(diǎn)、在拋物線的對稱軸上(點(diǎn)在點(diǎn)的上方),且,過點(diǎn)軸的平行線交直線于點(diǎn),當(dāng)最大時(shí),請直接寫出四邊形的周長最小時(shí)點(diǎn)、的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家教委規(guī)定中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí).為此某中學(xué)為了了解學(xué)生體育活動(dòng)情況,隨機(jī)調(diào)查了720名畢業(yè)班學(xué)生,調(diào)查內(nèi)容是:每天鍛煉是否超過1小時(shí)及未超過1小時(shí)的原因,所得的數(shù)據(jù)制成了的扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖.根據(jù)圖示,解答下列問題:

1)若在被調(diào)查的學(xué)生中隨機(jī)選出一名學(xué)生測試其體育成績,選出的恰好是每天鍛煉超過1小時(shí)的學(xué)生的概率是多少?

2沒時(shí)間的人數(shù)是多少?并補(bǔ)全頻數(shù)分布直方圖;

32010年這個(gè)地區(qū)初中畢業(yè)生約為3.2萬人,按此調(diào)查,可以估計(jì)2010年這個(gè)地區(qū)初中畢業(yè)生中每天鍛煉未超過1小時(shí)的學(xué)生約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形中有3個(gè)角、3條邊共6個(gè)元素,由其中的已知元素,求出所有未知元素的過程,叫做解三角形.

已知△ABC中,AB,∠B45°,BC1,解△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,制作一種產(chǎn)品的同時(shí),需要將原材料加熱,設(shè)該材料溫度為y℃,從加熱開始計(jì)算的時(shí)間為x分鐘,據(jù)了解,該材料在加熱過程中溫度y與時(shí)間x成一次函數(shù)關(guān)系,已知該材料在加熱前的溫度為15℃,加熱5分鐘使材料溫度達(dá)到60℃時(shí)停止加熱.停止加熱后,材料溫度逐漸下降,這時(shí)溫度y與時(shí)間x成反比例函數(shù)關(guān)系.

1)分別求出該材料加熱過程中和停止加熱后yx之間的函數(shù)表達(dá)式,并寫出x的取值范圍;

2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時(shí)間內(nèi),需要對該材料進(jìn)行特殊處理,那么對該材料進(jìn)行特殊處理所用的時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC30°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(30α150)得到△AB′C′B、C兩點(diǎn)的對應(yīng)點(diǎn)分別為點(diǎn)B′、C′,連接BC′,BCACAB′相交于點(diǎn)E、F

(1)當(dāng)α70時(shí),∠ABC′_____°,∠ACB′______°

(2)求證:BC′CB′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點(diǎn)為BAC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CEAB,交AB的延長線于點(diǎn)E

1)求證:CB平分∠ACE;

2)若BE=3CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.

(1)試求A,B,C的坐標(biāo);

(2)將ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到BAD.3

求點(diǎn)D的坐標(biāo);

判斷四邊形ADBC的形狀,并說明理由;

(3)在該拋物線對稱軸上是否存在點(diǎn)P,使BMP與BAD相似?若存在,請直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案