【題目】已知關(guān)于x的二次函數(shù)y=2x2+bx+c.當(dāng)x=1時,y=4;當(dāng)x=﹣2,y=﹣5.
(1)求y關(guān)于x的二次函數(shù)的解析式;
(2)在直角坐標(biāo)系中把(1)中的圖象拋物線平移到頂點與原點重合,應(yīng)該怎樣平移?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點A(﹣3,0),B(1,0),交y軸正半軸于點D,拋物線頂點為C.下列結(jié)論
①2a﹣b=0;
②a+b+c=0;
③當(dāng)m≠﹣1時,a﹣b>am2+bm;
④當(dāng)△ABC是等腰直角三角形時,a=;
⑤若D(0,3),則拋物線的對稱軸直線x=﹣1上的動點P與B、D兩點圍成的△PBD周長最小值為3,其中,正確的個數(shù)為( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=ax+b的圖象上有兩點A、B,它們的橫坐標(biāo)分別是3,-1,若二次函數(shù)y=x2的圖象經(jīng)過A、B兩點.
(1)請求出一次函數(shù)的表達(dá)式;
(2)設(shè)二次函數(shù)的頂點為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點在邊上,點在的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.
(1) 與之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);
(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時的長為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a>0)與一次函數(shù)y2=kx+m的圖象相交于A(﹣1,4)、B(4,2)兩點,則能使關(guān)于x的不等式ax2+(b﹣k)x+c﹣m>0成立的x的取值范圍是( 。
A.2<x<4B.﹣1<x<4C.x<﹣1或x>4D.x>4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點的坐標(biāo)為點的坐標(biāo)為,點的坐標(biāo)為,點在軸上,且點在點的右側(cè).
()求菱形的周長.
()若⊙沿軸向右以每秒個單位長度的速度平移,菱形沿軸向左以每秒個單位長度的速度平移,設(shè)菱形移動的時間為(秒),當(dāng)⊙與相切,且切點為的中點時,連接,求的值及的度數(shù).
()在()的條件下,當(dāng)點與所在的直線的距離為時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB=6,AC=3,∠BAC=60°,為⊙O上的一段弧,且∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖①,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1,求∠BPC的度數(shù)和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),可得∠AP′B= °,所以∠BPC=∠AP′B= °,還可證得△ABP是直角三角形,進(jìn)而求出等邊三角形ABC的邊長為 ,問題得到解決.
(1)根據(jù)李明同學(xué)的思路填空:∠AP′B= °,∠BPC=∠AP′B= °,等邊三角形ABC的邊長為 .
(2)探究并解決下列問題:如圖③,在正方形ABCD內(nèi)有一點P,且PA=,PB=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com