【題目】如圖,拋物線(xiàn)經(jīng)過(guò)A﹣10),B5,0),C0,)三點(diǎn).

1)求拋物線(xiàn)的解析式;

2)在拋物線(xiàn)的對(duì)稱(chēng)軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);

3)點(diǎn)Mx軸上一動(dòng)點(diǎn),在拋物線(xiàn)上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】解:(1)設(shè)拋物線(xiàn)的解析式為y=ax2+bx+ca≠0),

∵A﹣1,0),B5,0),C0)三點(diǎn)在拋物線(xiàn)上,

,解得。

拋物線(xiàn)的解析式為:。

2,其對(duì)稱(chēng)軸為直線(xiàn)x=2

連接BC,如圖1所示,

∵B5,0),C0,),

設(shè)直線(xiàn)BC的解析式為y=kx+bk≠0),

,解得:。

直線(xiàn)BC的解析式為。

當(dāng)x=2時(shí),,

∴P2)。

3)存在。

如圖2所示,

當(dāng)點(diǎn)Nx軸下方時(shí),

拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=2,C0),

∴N14)。

當(dāng)點(diǎn)Nx軸上方時(shí),

如圖2,過(guò)點(diǎn)NND⊥x軸于點(diǎn)D,

△AND△MCO中,,

∴△AND≌△MCOASA)。

∴ND=OC=,即N點(diǎn)的縱坐標(biāo)為。

,解得。

∴N2,),N3,).

綜上所述,符合條件的點(diǎn)N的坐標(biāo)為(4,),(,)或(,

【解析】

試題本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)與二次函數(shù)的解析式、平行四邊的判定與性質(zhì)、全等三角形等知識(shí),在解答(3)時(shí)要注意進(jìn)行分類(lèi)討論.(1)設(shè)拋物線(xiàn)的解析式為y=ax2+bx+ca≠0),再把A﹣1,0),B5,0),C0,)三點(diǎn)代入求出a、b、c的值即可;(2)因?yàn)辄c(diǎn)A關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)B的坐標(biāo)為(5,0),連接BC交對(duì)稱(chēng)軸直線(xiàn)于點(diǎn)P,求出P點(diǎn)坐標(biāo)即可;(3)分點(diǎn)Nx軸下方或上方兩種情況進(jìn)行討論.

試題解析:(1)設(shè)拋物線(xiàn)的解析式為y=ax2+bx+ca≠0),∵A﹣1,0),B5,0),C0,)三點(diǎn)在拋物線(xiàn)上,,解得拋物線(xiàn)的解析式為:y=x2﹣2x﹣

2拋物線(xiàn)的解析式為:y=x2﹣2x﹣,其對(duì)稱(chēng)軸為直線(xiàn)x=﹣=﹣=2,連接BC,如圖1所示,

∵B5,0),C0,),設(shè)直線(xiàn)BC的解析式為y=kx+bk≠0),,解得,直線(xiàn)BC的解析式為y=x﹣,當(dāng)x=2時(shí),y=1﹣=﹣,∴P2,);

3)存在.如圖2所示,

當(dāng)點(diǎn)Nx軸下方時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=2C0,),∴N14,);

當(dāng)點(diǎn)Nx軸上方時(shí),如圖2,過(guò)點(diǎn)N2N2D⊥x軸于點(diǎn)D,在△AN2D△M2CO中,

∴△AN2D≌△M2COASA),∴N2D=OC=,即N2點(diǎn)的縱坐標(biāo)為x2﹣2x﹣=,

解得x=2+x=2﹣∴N22+,),N32﹣,).綜上所述,符合條件的點(diǎn)N的坐標(biāo)為N14,),N22+,)或N32﹣,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B,F,C,E在直線(xiàn)lFC之間不能直接測(cè)量,點(diǎn)A,Dl異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.

1求證:ABC≌△DEF

2指出圖中所有平行的線(xiàn)段,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:兩個(gè)二次項(xiàng)系數(shù)之和為1,對(duì)稱(chēng)軸相同,且圖象與y軸交點(diǎn)也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:的友好同軸二次函數(shù)為

請(qǐng)你分別寫(xiě)出,的友好同軸二次函數(shù);

滿(mǎn)足什么條件的二次函數(shù)沒(méi)有友好同軸二次函數(shù)?滿(mǎn)足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?

如圖,二次函數(shù)與其友好同軸二次函數(shù)都與y軸交于點(diǎn)A,點(diǎn)B、C分別在、上,點(diǎn)B,C的橫坐標(biāo)均為,它們關(guān)于的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)分別為,,連結(jié),,,CB.

,且四邊形為正方形,求m的值;

,且四邊形的鄰邊之比為1:2,直接寫(xiě)出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形EFGH的頂點(diǎn)在邊長(zhǎng)為2的正方形的邊上.若設(shè)AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn)

(1)求m的值及C點(diǎn)坐標(biāo);

(2)在直線(xiàn)BC上方的拋物線(xiàn)上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;

(3)P為拋物線(xiàn)上一點(diǎn),它關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)為Q

①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);

②點(diǎn)P的橫坐標(biāo)為t(0t4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,的平分線(xiàn)交AD于點(diǎn)E,交BA的延長(zhǎng)線(xiàn)于點(diǎn)F,,,則AF的長(zhǎng)度是  

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上午8時(shí),一條船從海島A出發(fā),15海里/時(shí)的速度向正北航行,10時(shí)到達(dá)海島B,A,B望燈塔C,測(cè)得∠NAC=30,NBC=60.

(1)求從海島B到燈塔C的距離;

(2)這條船繼續(xù)向正北航行,問(wèn)在上午或下午的什么時(shí)間小船與燈塔C的距離最短?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(2,4),B點(diǎn)坐標(biāo)為(4,2);

(2)在第二象限內(nèi)的格點(diǎn)上畫(huà)一點(diǎn)C,使點(diǎn)C與線(xiàn)段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則C點(diǎn)坐標(biāo)是   ;

(3)求△ABCBC邊上的高長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn) C 為線(xiàn)段 AB 上一點(diǎn),ACM、CBN 都是等邊三角形,AN、MC 交于點(diǎn) E,BMCN 交于點(diǎn) F

1)說(shuō)明 AN=MB 的理由

2CEF 是什么三角形?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案