【題目】如圖,已知∠AOB=90°,∠BOC=30°,OM平分∠AOCON平分∠BOC

1)求∠MON的度數(shù);

2)若題干中的∠AOB=,其他條件不變,求∠MON的度數(shù);

3)若題干中的∠BOC=(為銳角),其他條件不變,求∠MON的度數(shù);

4)綜合(1)(2)(3)的結(jié)果,你能得出什么結(jié)論?

【答案】(1)∠MON=45°;(2)∠MON= ;(3)∠MON=45°;(4)∠MON的大小始終等于∠AOB的一半,與∠BOC的大小沒有關(guān)系.

【解析】

1)根據(jù)題意,易得∠MOCAOC,∠NOCBOC進(jìn)而結(jié)合∠MON=MOC﹣∠NOC的關(guān)系,易得答案;

2)由(1)的結(jié)論,易得當(dāng)∠AOB=α°時(shí),總有∠MONAOB的關(guān)系,即得答案;

3)由(1)的結(jié)論,易得當(dāng)∠BOC=β°(∠BOC為銳角)時(shí),總有∠MONAOB的關(guān)系,即得答案;

4)分析(1)(2)(3)的結(jié)論,易得答案.

1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOCAOC,∠NOCBOC

又∵∠AOB=90°,∠BOC=30°,∴∠MON=MOC﹣∠NOCAOCBOC(∠AOC﹣∠BOCAOB=×90°=45°.

2)當(dāng)∠AOB=α,其他條件不變時(shí),∠MONAOBα

3)當(dāng)∠BOC=β,其他條件不變時(shí),∠MONAOB90°=45°.

4)由(1)(2)(3)的結(jié)果,可得出結(jié)論:∠MON總等于∠AOB的一半,而與∠BOC的大小無關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB=6cm,BC=4cm,E為CD的中點(diǎn).點(diǎn)P從A點(diǎn)出發(fā),沿A﹣B﹣C的方向在長(zhǎng)方形邊上勻速運(yùn)動(dòng),速度為1cm/s,運(yùn)動(dòng)到C點(diǎn)停止.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.(圖為備用圖)

(1)當(dāng)P在AB上,t=   s時(shí),APE的面積為長(zhǎng)方形面積的;

(2)整個(gè)運(yùn)動(dòng)過程中,t為何值時(shí),APE為直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角尺(∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OMOC都在直線AB的上方.

(1)若將圖1中的三角尺繞點(diǎn)O以每秒5°的速度,沿順時(shí)針方向旋轉(zhuǎn)t秒,當(dāng)OM恰好平分∠BOC時(shí),如圖2

①求t值;

②試說明此時(shí)ON平分∠AOC;

(2)將圖1中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn),設(shè)∠AON=α,∠COM=β,當(dāng)ON在∠AOC內(nèi)部時(shí),試求α與β的數(shù)量關(guān)系;

(3)若將圖1中的三角尺繞點(diǎn)O以每秒5°的速度沿順時(shí)針方向旋轉(zhuǎn)的同時(shí),射線OC也繞點(diǎn)O以每秒8°的速度沿順時(shí)針方向旋轉(zhuǎn),如圖3,那么經(jīng)過多長(zhǎng)時(shí)間,射線OC第一次平分∠MON?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD相交于點(diǎn)O,在∠COB的內(nèi)部作射線OE.

1)若∠AOC=36°,COE=90°,求∠BOE的度數(shù);

2)若∠COEEOBBOD=432,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分自2014年12月啟動(dòng)綠茵行動(dòng),青春聚力郴州共青林植樹活動(dòng)以來,某單位籌集7000元購買了桂花樹和櫻花樹共30棵,其中購買桂花樹花費(fèi)3000元已知桂花樹比櫻花樹的單價(jià)高50%,求櫻花樹的單價(jià)及棵樹

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①對(duì)頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有(   ).

A. ①②③④ B. ①④ C. ②④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)前夕小東的父母準(zhǔn)備購買若干個(gè)粽子和咸鴨蛋(每個(gè)粽子的價(jià)格相同,每個(gè)咸鴨蛋的價(jià)格相同).已知粽子的價(jià)格比咸鴨蛋的價(jià)格貴1.830元購買粽子的個(gè)數(shù)與花12元購買咸鴨蛋的個(gè)數(shù)相同,求粽子與咸鴨蛋的價(jià)格各多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn)如圖,已知:AB=AC,∠BAC=90°,直線m經(jīng)過點(diǎn)A,過點(diǎn)BBD⊥mD, CE⊥mE.我們把這種常見圖形定義為“K”字圖.很容易得到線段DE、BD、CE之間的數(shù)量關(guān)系是 .

拓展探究:如圖2,AB=AC,∠BAC=∠BDA=∠AEC,則線段DE、BD、CE之間的數(shù)量關(guān)系還成立嗎?如果成立,請(qǐng)證明之.

解決問題:如圖3,AB=AC,∠BAC=∠BDA=∠AEC=120°,點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,BD=2,CE=4,求△DEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案