【題目】如圖①,長方形ABCD中,AB=6cm,BC=4cm,E為CD的中點.點P從A點出發(fā),沿A﹣B﹣C的方向在長方形邊上勻速運動,速度為1cm/s,運動到C點停止.設(shè)點P運動的時間為ts.(圖②為備用圖)
(1)當(dāng)P在AB上,t= s時,△APE的面積為長方形面積的;
(2)整個運動過程中,t為何值時,△APE為直角三角形?
【答案】(1)4;(2)當(dāng)t=3s或t=s時,△APE為直角三角形.
【解析】
(1)設(shè)t秒后,△APE的面積為長方形面積的,根據(jù)題意得:△APE的面積=APAD=t×4=,從而求得t值;
(2)①當(dāng)P運動到AB中點時△AEP為直角三角形,此時∠APE為直角,t=3;②當(dāng)P運動到BC上時,∠AEP為直角時利用相似三角形求得PB的長即可求得t值.
(1)設(shè)t秒后,△APE的面積為長方形面積的,根據(jù)題意得:AP=t,∴△APE的面積=APAD=t×4=,解得:t=4,∴4秒后,△APE的面積為長方形面積的;
(2)①當(dāng)t=3時,AP=3,如圖1所示:
∵E為CD的中點,∴CE=DE=3.
∵四邊形ABCD是矩形,BC=AD=4,∴四邊形APED是矩形,∴PE⊥AB,∴△APE是直角三角形;
②當(dāng)P在BC上時,若△APE是直角三角形,∠AED+∠PEC=90°,如圖2所示:
∵∠ADE=∠ECP=90°,∴∠AED=∠EPC,∴△ADE∽△ECP,∴=,解得:CP===,∴PB=BC﹣PC=4﹣=,∴t=6+=.
綜上所述:當(dāng)t=3s或t=s時,△APE為直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加一個條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( )
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.
(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,求∠FEB的度數(shù).
(2)如圖,A地和B地都是海上觀測站,從A地發(fā)現(xiàn)它的北偏東60方向有一艘船P,同時,從B地發(fā)現(xiàn)這艘船P在它北偏東30方向.試在圖中畫出這艘船P的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.
(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在升旗結(jié)束后,小銘想利用所學(xué)數(shù)學(xué)知識測量學(xué)校旗桿高度,如圖,旗桿的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好至C處且與地面成60°角,小銘從繩子末端C處拿起繩子后退至E點,求旗桿AB的高度和小銘后退的距離.(單位:米,參考數(shù)據(jù):≈1.41,≈1.73,結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是 的中點,連接AC、BC,則圖中陰影部分面積是( )
A. ﹣2
B. ﹣2
C. ﹣
D. ﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是一個非常重要的數(shù)學(xué)工具,通過它把數(shù)和數(shù)軸上的點建立起對應(yīng)關(guān)系,揭示了數(shù)與點之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ).已知數(shù)軸上有點A和點B,點A和點B分別表示數(shù)-20和40,請解決以下問題:
(1)請畫出數(shù)軸,并標(biāo)明A、B兩點;
(2)若點P、Q分別從點A、點B同時出發(fā),相向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當(dāng)P、Q相遇于點C時,C所對應(yīng)的數(shù)是多少?
(3)若點P、Q分別從點A、點B同時出發(fā),沿x軸正方向同向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當(dāng)P、Q相遇于點D時,D所對應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度數(shù);
(2)若題干中的∠AOB=,其他條件不變,求∠MON的度數(shù);
(3)若題干中的∠BOC=(為銳角),其他條件不變,求∠MON的度數(shù);
(4)綜合(1)(2)(3)的結(jié)果,你能得出什么結(jié)論?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com