【題目】某游泳池長25米,小林和小明兩個(gè)人分別在游泳池的A,B兩邊,同時(shí)朝著另一邊游泳,他們游泳的時(shí)間為(秒),其中0≤t≤180,到A邊距離為y(米),圖中的實(shí)線和虛線分別表示小林和小明在游泳過程中yt的對(duì)應(yīng)關(guān)系.下面有四個(gè)推斷:

①小明游泳的平均速度小于小林游泳的平均速度;

②小明游泳的距離大于小林游泳的距離;

③小明游75米時(shí)小林游了90米游泳;

④小明與小林共相遇5次;

其中正確的是( 。

A. ①② B. ①③ C. ③④ D. ②④

【答案】D

【解析】分析:分別求出小明和小林的速度,即可判斷①的對(duì)錯(cuò);由圖像分別算出小明和小林游泳的距離判斷出②的對(duì)錯(cuò);先求出小明游75米用的時(shí)間,再用所求的時(shí)間×小林的速度,即可求出小明游的距離;由圖像交點(diǎn)的個(gè)數(shù)即可判斷出相遇次數(shù).

詳解:①∵小明的速度=25×3÷90=/秒,小林的速度=25×2÷90=/秒,∴小明游泳的平均速度大于小林游泳的平均速度,故①錯(cuò)誤

∵小明的游泳距離=25×6=150米,小明的游泳距離=25×4=100米,∴小明游泳的距離大于小林游泳的距離,故②正確;

③∵75÷=90秒,90×=50,∴小明游75米時(shí)小林游了50米,故③錯(cuò)誤;

由圖像知小明與小林共相遇5次,故④正確

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.

(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=   ;

(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;

(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)長方形紙條ABCD,點(diǎn)P,Q是線段CD上的兩個(gè)動(dòng)點(diǎn),且點(diǎn)P始終在點(diǎn)Q左側(cè),在AB上有一點(diǎn)O,連結(jié)PO、QO,以PO,QO為折痕翻折紙條,使點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D分別落在點(diǎn)A’、點(diǎn)B’、點(diǎn)C’、點(diǎn)D’.

1)當(dāng)時(shí),=_______

2)當(dāng)A’OB’O重合時(shí),=_________.

3)當(dāng)時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問題:

1)寫出你所學(xué)過的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱;

2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程mx24m+1x+3m+3=0 m1.

1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1,x2(其中x1x2),若y是關(guān)于m的函數(shù),且y=x1﹣3x2,求這個(gè)函數(shù)的解析式;

3)將(2)中所得的函數(shù)的圖象在直線m=2的左側(cè)部分沿直線m=2翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)關(guān)于m的函數(shù)y=2m+b的圖象與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,數(shù)軸上有A、B、C三點(diǎn),且AB=3BC,若B為原點(diǎn),A點(diǎn)表示數(shù)為6.

(1)求C點(diǎn)表示的數(shù);

(2)若數(shù)軸上有一動(dòng)點(diǎn)P,以每秒1個(gè)單位的速度從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用含t的代數(shù)式表示PB的長;

(3)在(2)的條件下,點(diǎn)P運(yùn)動(dòng)的同時(shí)有一動(dòng)點(diǎn)Q從點(diǎn)A以每秒2個(gè)單位的速度向點(diǎn)C勻速運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相距2個(gè)單位長度時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1.

1)求拋物線的解析式;

2)猜想△EDB的形狀并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把ABC 先沿 x 軸翻折,再向右平移 3 個(gè)單位得到ABC 現(xiàn)把這兩步 操作規(guī)定為一種變換.如圖,已知等邊三角形 ABC 的頂點(diǎn) B、C 的坐標(biāo)分別是(1,1)、(3,1), 把三角形經(jīng)過連續(xù) 5 次這種變換得到三角形ABC,則點(diǎn) A 的對(duì)應(yīng)點(diǎn) A 的坐標(biāo)是(

A.5,﹣B.14,1+C.17,﹣1D.20,1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是平行四邊形,AC、BD交于點(diǎn)O,∠1=∠2

1)求證:四邊形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案