【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC= ;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;
(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.
【答案】(1)45°;(2)BD=5.(3)最大值為OB+OD=2++.
【解析】分析:(1)由AC=AD得∠D=∠ACD,由平行四邊形的性質(zhì)得∠D=∠ABC,在△ACD中,由內(nèi)角和定理求解;
(2)如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉法證明△EAC≌△BAD,可證∠EBC=90°,BE=AB=3,在Rt△BCE中,由勾股定理求CE,由三角形全等得BD=CE;
(3)在△ACD的外部作等邊三角形△ACO,以O為圓心OA為半徑作⊙O,點B在⊙O上運動,作OE⊥DA交DA的延長線于E,構造直角三角形,根據(jù)勾股定理求解即可.
詳解:(1)解:(1)如圖1中,
∵AD∥BC,
∴∠DAC=∠BCA.∠DAB+∠ABC=180°.
∵AC=BC,
∴∠ABC=∠BAC.
∵∠DAC=2∠ABC,
∴2∠ABC+2∠ABC=180°,
∴∠ABC=45°
故答案為:45°;
(2)如圖2,以AB為邊在△ABC外作等邊三角形△ABE,連接CE.
∵△ACD是等邊三角形,
∴AD=AC,∠DAC=60°.
∵∠BAE=60°,
∴∠DAC+∠BAC=∠BAE+∠BAC.
即∠EAC=∠BAD
∴△EAC≌△BAD.
∴EC=BD.
∵∠BAE=60°,AE=AB=3,
∴△AEB是等邊三角形,
∴∠EBA=60°,EB=3,
∵∠ABC=30°,
∴∠EBC=90°.
∵∠EBC=90°,EB=3,BC=4,
∴EC=5.
∴BD=5.
(3)如圖3中,在△ACD的外部作等邊三角形△ACO,以O為圓心OA為半徑作⊙O.
∵∠ABC=∠AOC=30°,
∴點B在⊙O上運動,
作OE⊥DA交DA的延長線于E.
在Rt△AOE中,OA=AC=2,∠EAO=30°,
∴OE=OA=1,AE= ,
在Rt△ODE中,DE=AE+AD=2+,
∴DO==+,
當B、O、D共線時,BD的值最大,最大值為OB+OD=2++.
科目:初中數(shù)學 來源: 題型:
【題目】如圖在菱形ABCD中,∠A=60°,AD=,點P是對角線AC上的一個動點,過點P作EF⊥AC交CD于點E,交AB于點F,將△AEF沿EF折疊點A落在G處,當△CGB為等腰三角形時,則AP的長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A點的坐標是(3,3),AB⊥x軸于點B,反比例函數(shù)y=的圖象中的一支經(jīng)過線段OA上一點M,交AB于點N,已知OM=2AM.
(1)求反比例函數(shù)的解析式;
(2)若直線MN交y軸于點C,求△OMC的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;
(2)請你直接利用以上結論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,線段AD=10cm,點B,C都是線段AD上的點,且AC=7cm,BD=4cm,若E,F分別是線段AB,CD的中點,求BC與EF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個多邊形就叫做正多邊形.如圖,就是一組正多邊形,觀察每個正多邊形中∠α的變化情況,解答下列問題:
(1)將下面的表格補充完整:
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | … | n |
∠α的度數(shù) | 60° | 45° |
|
| … |
|
(2)根據(jù)規(guī)律,是否存在一個正多邊形,其中的∠α=21°?若存在,請求出n的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游泳池長25米,小林和小明兩個人分別在游泳池的A,B兩邊,同時朝著另一邊游泳,他們游泳的時間為(秒),其中0≤t≤180,到A邊距離為y(米),圖中的實線和虛線分別表示小林和小明在游泳過程中y與t的對應關系.下面有四個推斷:
①小明游泳的平均速度小于小林游泳的平均速度;
②小明游泳的距離大于小林游泳的距離;
③小明游75米時小林游了90米游泳;
④小明與小林共相遇5次;
其中正確的是( 。
A. ①② B. ①③ C. ③④ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com