【題目】如圖,⊙O半徑為4cm,其內接正六邊形ABCDEF,點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向終點F,C運動,連接PB,QE,PE,BQ.設運動時間為t(s).
(1)求證:四邊形PEQB為平行四邊形;
(2)填空:
①當t=s時,四邊形PBQE為菱形;
②當t=s時,四邊形PBQE為矩形.
【答案】
(1)證明:∵正六邊形ABCDEF內接于⊙O,
∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,
∵點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向終點F,C運動,
∴AP=DQ=t,PF=QC=4﹣t,
在△ABP和△DEQ中,
,
∴△ABP≌△DEQ(SAS),
∴BP=EQ,同理可證PE=QB,
∴四邊形PEQB是平行四邊形
(2)2;0或4
【解析】(2)解:①當PA=PF,QC=QD時,四邊形PBEQ是菱形時,此時t=2s.
②當t=0時,∠EPF=∠PEF=30°,
∴∠BPE=120°﹣30°=90°,
∴此時四邊形PBQE是矩形.
當t=4時,同法可知∠BPE=90°,此時四邊形PBQE是矩形.
綜上所述,t=0s或4s時,四邊形PBQE是矩形.
故答案為2s,0s或4s.
(1)根據(jù)正六邊形的性質得出AB=DE,∠A=∠D,再根據(jù)點P,Q同時分別從A,D兩點出發(fā),以1cm/s速度沿AF,DC向終點F,C運動,得出AP=DQ,就可證明△ABP≌△DEQ,可得BP=EQ,同理PE=BQ,由此即可證明結論。
(2)①當PA=PF,QC=QD時,四邊形PBEQ是菱形時,此時t=2s;
②當t=0時,∠EPF=∠PEF=30°,得出∠BPE=90°,可證明此時四邊形PBQE是矩形.當t=4時,同法可知∠BPE=90°,此時四邊形PBQE是矩形,即可得出答案。
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,已知∠1+∠2=180°,∠2=∠B,試說明∠DEC+∠C=180°,請完成下列填空:
證明:∵∠1+∠2=180°(已知)
∴_____∥_____(____________________)
∴______=∠EFC(____________________)
又∵2=∠B(已知)
∴∠2=______(等量代換)
∴___________(內錯角相等,兩直線平行)
∴∠DEC+∠C=180°(兩直線平行,同旁內角互補)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形ABCDE的邊長為2,連結AC、AD、BE,BE分別與AC和AD相交于點F、G,連結DF,給出下列結論:①∠FDG=18°;②FG=3﹣ ;③(S四邊形CDEF)2=9+2 ;④DF2﹣DG2=7﹣2 .其中結論正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的推理過程,在括號內填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線m經(jīng)過A(4,0)、B(3,﹣),直線n經(jīng)過原點且與直線m相交于D,D點的橫坐標為﹣2.
(1)求直線m、n的表達式;
(2)求△OBD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結論中: ①△BDE是等邊三角形; ②AE∥BC; ③△ADE的周長是9; ④∠ADE=∠BDC.其中正確的序號是( 。
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動點,則線段的OM的長的取值范圍是( )
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代換),
∴DB∥EC( ),
∴∠DBC+∠C=1800(兩直線平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代換),
∴DF∥AC( ,兩直線平行),
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 學!鞍僮兡Х健鄙鐖F準備購買A,B兩種魔方,已知購買2個A種魔方和6個B種魔方共需130元,購買3個A種魔方和4個B種魔方所需款數(shù)相同.
(1)求這兩種魔方的單價;
(2)結合社員們的需求,社團決定購買A,B兩種魔方共100個.某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息,購進A種魔方多少個時,兩種活動費用相同?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com