【題目】如圖,在矩形ABCD中,AB=6,BC=8,點O為對角線BD的中點,點E為邊AD上一點,連接OE,將△DOE沿OE翻折得到△OEF,若OF⊥AD于點G,則OE=______.
【答案】
【解析】
由矩形的性質(zhì)和勾股定理得出BD==10,得出OD=5,由折疊的性質(zhì)得:∠F=∠ADB,OF=OD=5,證出OG是△ABD的中位線,△GEF∽△ABD,得出OG=AB=3,=,求出GE=,在Rt△OGE中,由勾股定理即可得出結(jié)果.
解:∵四邊形ABCD是矩形,
∴∠A=90°,AD=BC=8,
∴AB⊥AD,BD==10,
∵點O為對角線BD的中點,
∴OD=5,
由折疊的性質(zhì)得:∠F=∠ADB,OF=OD=5,
∵OF⊥AD,∴OF∥AB,∠OGE=∠FGE=90°=∠A,
∴OG是△ABD的中位線,△GEF∽△ABD,
∴OG=AB=3,=,
∴FG=OF-OG=2,=,
∴GE=,
在Rt△OGE中,由勾股定理得:OE===;
故答案是:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在反比例函數(shù)y= 的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內(nèi)有一點C,滿足AC=BC,當點A運動時,點C始終在函數(shù)y= 的圖象上運動,若tan∠CAB=2,則k的值為( )
A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40元,經(jīng)過調(diào)查發(fā)現(xiàn),銷售單價每降低5元,每天可多售出10件,下列說法錯誤的是( )
A.銷售單價降低15元時,每天獲得利潤最大
B.每天的最大利潤為1250元
C.若銷售單價降低10元,每天的利潤為1200元
D.若每天的利潤為1050元,則銷售單價一定降低了5元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 6,AC = 8.點D是AB邊上一點,過點D作DE // BC,交邊AC于E.過點C作CF // AB,交DE的延長線于點F.
(1)如果,求線段EF的長;
(2)求∠CFE的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊共同承建某高速路隧道工程,隧道總長2000米,甲、乙分別從隧道兩端向中間施工,計劃每天各施工6米.因地質(zhì)情況不同,兩支隊伍每合格完成1米隧道施工所需成本不一樣.甲每合格完成1米,隧道施工成本為6萬元;乙每合格完成1米,隧道施工成本為8萬元.
(1)若工程結(jié)算時乙總施工成本不低于甲總施工成本的,求甲最多施工多少米?
(2)實際施工開始后因地質(zhì)情況比預估更復雜,甲乙兩隊每日完成量和成本都發(fā)生變化.甲每合格完成1米隧道施工成本增加m萬元時,則每天可多挖m米,乙因特殊地質(zhì),在施工成本不變的情況下,比計劃每天少挖m米,若最終每天實際總成本比計劃多(11m-8)萬元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為m,到墻邊OA的距離分別為m,m.
(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10 m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“共和國勛章”是中華人民共和國的最高榮譽勛章.在2019年獲得“共和國勛章”的八位杰出人物中,有于敏、孫家棟、袁隆平、黃旭華四位院士.如圖是四位院士(依次記為A,B,C,D)為讓同學們了解四位院士的貢獻,老師設(shè)計如下活動:取四張完全相同的卡片,分別寫上A,B,C,D四個標號,然后背面朝上放置,攪勻后每個同學可從中隨機抽取一張,記下標號后放回,老師要求每位同學根據(jù)抽到的卡片上的標號查找相應(yīng)院士的資料制作小報,求小明和小華查找同一位院士資料的概率.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】順次連接一個四邊形的各邊中點,得到了一個矩形,則下列四邊形中滿足條件的是( 。
①平行四邊形;②菱形;③矩形;④對角線互相垂直的四邊形.
A. ①③B. ②③C. ③④D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com