【題目】如圖1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)E是BC邊上一點(diǎn),∠DEF=45°且角的兩邊分別與邊AB,射線(xiàn)CA交于點(diǎn)P,Q.

(1)如圖2,若點(diǎn)E為BC中點(diǎn),將∠DEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),DE與邊AB交于點(diǎn)P,EF與CA的延長(zhǎng)線(xiàn)交于點(diǎn)Q.設(shè)BP為x,CQ為y,試求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)如圖3,點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng)(不與B,C重合),且DE始終經(jīng)過(guò)點(diǎn)A,EF與邊AC交于Q點(diǎn).探究:在∠DEF運(yùn)動(dòng)過(guò)程中,△AEQ能否構(gòu)成等腰三角形,若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵∠BAC=90°,AB=AC=2,

∴∠B=∠C,

又∵∠FEB=∠FED+∠DEB=∠EQC+∠C,∠DEF=∠C,

∴∠DEB=∠EQC,

∴△BPE∽△CEQ,

設(shè)BP為x,CQ為y,

,自變量x的取值范圍是0<x<1


(2)

解:∵∠AEF=∠B=∠C,且∠AQE>∠C,

∴∠AQE>∠AEF.

∴AE≠AQ.

當(dāng)AE=EQ時(shí),

∴∠EAQ=∠EQA,

∵∠AEQ=45°,

∴∠EAQ=∠EQA=67.5°,

∵∠BAC=90°,∠C=45,

∴∠BAE=∠QEC=22.5°.

∵在△ABE和△ECQ中,

∴△ABE≌ECQ(AAS).

∴CE=AB=2.

∴BE=BC﹣EC= ;

當(dāng)AQ=EQ時(shí),可知∠QAE=∠QEA=45°,

∴AE⊥BC.

∴點(diǎn)E是BC的中點(diǎn).

∴BE=

綜上,在∠DEF運(yùn)動(dòng)過(guò)程中,△AEQ能成等腰三角形,此時(shí)BE的長(zhǎng)為


【解析】(1)根據(jù)條件由勾股定理可以求出BC的值,再求出∠DEB=∠EQC,就可以得出△BPE∽△CEQ,由相似三角形的性質(zhì)就可以得出結(jié)論;(2)由∠AEF=∠B=∠C,且∠AQE>∠C可以得出∠AQE>∠AEF.從而有AE≠AQ,再分類(lèi)討論,當(dāng)AE=EQ時(shí)和AQ=EQ時(shí)根據(jù)等腰三角形的性質(zhì)和全等三角形的性質(zhì)就可以求出BE的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解全等三角形的性質(zhì)的相關(guān)知識(shí),掌握全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等,以及對(duì)勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列要求,解答相關(guān)問(wèn)題.
請(qǐng)補(bǔ)全以下求不等式﹣2x2﹣4x>0的解集的過(guò)程.
①構(gòu)造函數(shù),畫(huà)出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標(biāo)系中(圖1)畫(huà)出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫(huà)出圖象即可).
②求得界點(diǎn),標(biāo)示所需,當(dāng)y=0時(shí),求得方程﹣2x2﹣4x=0的解為多少?;并用鋸齒線(xiàn)標(biāo)示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫(xiě)出解集:由所標(biāo)示圖象,可得不等式﹣2x2﹣4x>0的解集為﹣2<x<0.請(qǐng)你利用上面求一元一次不等式解集的過(guò)程,求不等式x2﹣2x+1≥4的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,AE、BF是角平分線(xiàn),它們相交于點(diǎn)O,AD是高,BAC=54°,C=66°,求DAC、BOA的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在△ABC,∠1∠2,GAD的中點(diǎn),BG的延長(zhǎng)線(xiàn)交AC于點(diǎn)E,FAB上的一點(diǎn),CFAD垂直AD于點(diǎn)H,則下面判斷正確的有(  )

AD是△ABE的角平分線(xiàn);BE是△ABD的邊AD上的中線(xiàn)

CH是△ACD的邊AD上的高;AH是△ACF的角平分線(xiàn)和高

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把兩個(gè)含有45°角的直角三角板ACBDEC如圖放置,點(diǎn)A,CE在同一直線(xiàn)上,點(diǎn)DBC上,連接BE,ADAD的延長(zhǎng)線(xiàn)交BE于點(diǎn)F.

(1)求證:△ADC≌△BEC;

(2)猜想ADEB是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊ABC的邊長(zhǎng)為4cm,點(diǎn)P,Q分別從B,C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s;

點(diǎn)Q沿CA,AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,設(shè)它們運(yùn)動(dòng)的時(shí)間為x(s),

(1)如圖(1),當(dāng)x為何值時(shí),PQAB;

(2)如圖(2),若PQAC,求x;

(3)如圖(3),當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),PQ與ABC的高AD交于點(diǎn)O,OQ與OP是否總是相等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解本校學(xué)生對(duì)球類(lèi)運(yùn)動(dòng)的愛(ài)好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個(gè)方面調(diào)查了若干名學(xué)生,在還沒(méi)有繪制成功的“折線(xiàn)統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”中,請(qǐng)你根據(jù)已提供的部分信息解答下列問(wèn)題.

(1)在這次調(diào)查活動(dòng)中,一共調(diào)查了 名學(xué)生,并請(qǐng)補(bǔ)全統(tǒng)計(jì)圖.

(2)“羽毛球”所在的扇形的圓心角是 度.

(3)若該校有學(xué)生1200名,估計(jì)愛(ài)好乒乓球運(yùn)動(dòng)的約有多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每逢金秋送爽之時(shí),正是大閘蟹上市的旺季,也是吃蟹的最好時(shí)機(jī),可謂膏肥黃美.九月份,某經(jīng)銷(xiāo)商購(gòu)進(jìn)一批雌蟹、雄蟹共1000只,進(jìn)價(jià)均為每只40元,然后以雌蟹每只75元、雄蟹每只60元的價(jià)格售完,共獲利29000元.
(1)求該經(jīng)銷(xiāo)商分別購(gòu)進(jìn)雌蟹、雄蟹各多少只?
(2)民間有“九雌十雄”的說(shuō)法,即九月吃雌蟹,十月吃雄蟹.十月份,在進(jìn)價(jià)不變的情況下該經(jīng)銷(xiāo)商決定調(diào)整價(jià)格,將雌蟹的價(jià)格在九月份的基礎(chǔ)上下調(diào)a%(降價(jià)后售價(jià)不低于進(jìn)價(jià)),雄蟹的價(jià)格上漲 a%,同時(shí)雌蟹的銷(xiāo)量較九月下降了 a%,雄蟹的銷(xiāo)量上升了25%,結(jié)果十月份的銷(xiāo)售額比九月份增加了1000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADBC,BAC=70°,DEAC于點(diǎn)ED=20°.

(1)求∠B的度數(shù),并判斷△ABC的形狀;

(2)若延長(zhǎng)線(xiàn)段DE恰好過(guò)點(diǎn)B,試說(shuō)明DB是∠ABC的平分線(xiàn).

查看答案和解析>>

同步練習(xí)冊(cè)答案