若Rt△ABC中,∠C=90°且c=13,a=12,則b=


  1. A.
    11
  2. B.
    8
  3. C.
    5
  4. D.
    3
C
分析:在直角三角形ABC中,利用勾股定理可得b=,代入數(shù)據(jù)可得出b的長度.
解答:∵三角形ABC是直角三角形,∠C=90°,
∴AC=,即b===5,
故選C.
點評:此題考查了勾股定理的知識,屬于基礎題,解答本題的關鍵是掌握勾股定理在解直角三角形中的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若Rt△ABC中兩條邊長為6和8,則該三角形面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、若Rt△ABC中,∠C=90°,c=5,b=3,則△ABC的內切圓的半徑r=
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若Rt△ABC中,兩直角邊AB,BC分別長3cm,4cm,則斜邊AC上的高為
2.4
2.4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所對的邊分別記作a、b、c.
(1)如圖1,分別以△ABC的三條邊為邊長向外作正方形,其正方形的面積由小到大分別記作S1、S2、S3,則有S1+S2=S3
(2)如圖2,分別以△ABC的三條邊為直徑向外作半圓,其半圓的面積由小到大分別記作S1、S2、S3,請問S1+S2與S3有怎樣的數(shù)量關系,并證明你的結論;
(3)分別以直角三角形的三條邊為直徑作半圓,如圖3所示,其面積由小到大分別記作S1、S2、S3,根據(jù)(2)中的探索,直接回答S1+S2與S3有怎樣的數(shù)量關系;
(4)若Rt△ABC中,AC=6,BC=8,求出圖4中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若Rt△ABC中,∠C=90°且c=13,a=12,則b=(  )

查看答案和解析>>

同步練習冊答案