【題目】已知拋物線(xiàn)y=-(x+4)(x-4)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),⊙C的半徑為2.G為⊙C上一動(dòng)點(diǎn),P為AG的中點(diǎn),則OP的最大值為( )
A. B. C. D.
【答案】A
【解析】
P為AG中點(diǎn),O為AB中點(diǎn),所以OP是△ABG的中位線(xiàn),則OP=BG,當(dāng)BG最大時(shí),則OP最大.由圓的性質(zhì)可知,當(dāng)G、C、B三點(diǎn)共線(xiàn)時(shí),BG最大.
解:如圖,連接BG,
令x=0,則y=-(0+4)(0-4)=3,則C(0,3).
由y=-(x+4)(x-4)得到:A(-4,0),B(4,0).
P為AG中點(diǎn),O為AB中點(diǎn),所以OP是△ABG的中位線(xiàn),則OP=BG,當(dāng)BG最大時(shí),則OP最大.
由圓的性質(zhì)可知,當(dāng)G、C、B三點(diǎn)共線(xiàn)時(shí),BG最大.
∵C(0,3),B(4,0),
∴BC==5,
∴BG的最大值為2+5=7,
∴OP的最大值為.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解一元二次方程x2+4x﹣9=0時(shí),原方程可變形為( 。
A. (x+2)2=1 B. (x+2)2=7 C. (x+2)2=13 D. (x+2)2=19
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 已知拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=3,且與x軸相交于A,B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè))與y軸交于C點(diǎn) .
(1)求拋物線(xiàn)的解析式和A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P是拋物線(xiàn)上B、C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B、C重合),則是否存在一點(diǎn)P,使△PBC的面積最大.若存在,請(qǐng)求出△PBC的最大面積;若不存在,試說(shuō)明理由;
(3)若M是拋物線(xiàn)上任意一點(diǎn),過(guò)點(diǎn)M作y軸的平行線(xiàn),交直線(xiàn)BC于點(diǎn)N,當(dāng)MN=3時(shí),求M點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正整數(shù)a,b,c(a<b<c)滿(mǎn)足a2+b2=c2,則稱(chēng)(a,b,c)為一組“勾股數(shù)”.
觀察下列兩類(lèi)“勾股數(shù)”:
第一類(lèi)(a是奇數(shù)):(3,4,5);(5,12,13);(7,24,25);…
第二類(lèi)(a是偶數(shù)):(6,8,10);(8,15,17);(10,24,26);…
(1)請(qǐng)?jiān)賹?xiě)出兩組勾股數(shù),每類(lèi)各寫(xiě)一組;
(2)分別就a為奇數(shù)、偶數(shù)兩種情形,用a表示b和c,并選擇其中一種情形證明(a,b,c)是“勾股數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:點(diǎn)Q到圖形W上每一個(gè)點(diǎn)的距離的最小值稱(chēng)為點(diǎn)Q到圖形W的距離.
例如,如圖1,正方形ABCD滿(mǎn)足A(1,0),B(2,0),C(2,1),D(1,1),那么點(diǎn)O(0,0)到正方形ABCD的距離為1.
(1)如果⊙P是以(3,4)為圓心,2為半徑的圓,那么點(diǎn)O(0,0)到⊙P的距離為 ;
(2)①求點(diǎn)M(3,0)到直線(xiàn)了y=x+4的距離:
②如果點(diǎn)N(0,a)到直線(xiàn)y=x+4的距離為2,求a的值;
(3)如果點(diǎn)G(0,b)到拋物線(xiàn)y=x2的距離為3,請(qǐng)直接寫(xiě)出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過(guò)點(diǎn)D作⊙O的切線(xiàn)DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,請(qǐng)直接寫(xiě)出弧AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店用3600元按批發(fā)價(jià)購(gòu)買(mǎi)了一批花卉.若將批發(fā)價(jià)降低10%,則可以多購(gòu)買(mǎi)該花卉20盆.市場(chǎng)調(diào)查反映,該花卉每盆售價(jià)25元時(shí),每天可賣(mài)出25盆.若調(diào)整價(jià)格,每盆花卉每漲價(jià)1元,每天要少賣(mài)出1盆.
(1)該花卉每盆批發(fā)價(jià)是多少元?
(2)若每天所得的銷(xiāo)售利潤(rùn)為200元時(shí),且銷(xiāo)量盡可能大,該花卉每盆售價(jià)是多少元?
(3)為了讓利給顧客,該花店決定每盆花卉漲價(jià)不超過(guò)5元,問(wèn)該花卉一天最大的銷(xiāo)售利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是BC上一點(diǎn),BF⊥AE交DC于點(diǎn)F,若AB=5,BE=2,則AF=____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com