【題目】如圖,ABC中,∠C=90°AC=12,BC=9AB=15,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒3個(gè)單位,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)當(dāng)t=   時(shí),CPABC的面積分成相等的兩部分;

2)當(dāng)t=5時(shí),CPABC分成的兩部分面積之比是=   .

3)若BPC的面積為18,試求t的值.

【答案】16.5秒;(214;(3t秒或.

【解析】

1)根據(jù)中線(xiàn)的性質(zhì)可知,點(diǎn)PAB中點(diǎn)時(shí),CPABC的面積分成相等的兩部分,列出方程求解即可;

2)求出當(dāng)t5時(shí),APBP的長(zhǎng),再根據(jù)等高的三角形面積比等于底邊的比求解即可;

3)分兩種情況:①PAC上;②PAB上,分別根據(jù)三角形面積公式建立關(guān)于t的方程,求解可得.

解:(1)當(dāng)點(diǎn)PAB中點(diǎn)時(shí),CPABC的面積分成相等的兩部分,

此時(shí)CAAP127.519.5,

3t19.5,

解得t6.5,

故當(dāng)t6.5秒時(shí),CPABC的面積分成相等的兩部分;

2)∵5×315,

AP15123BP15312,

SAPCSBPC31214;

3)分兩種情況:

①當(dāng)PAC上時(shí),

∵△BPC的面積為18

×9×CP18,

CP4

3t4,t;

②當(dāng)PAB上時(shí),

∵△BPC的面積為18,ABC的面積為

BPC的面積是ABC面積的,

3t1215×

解得:t,

t秒或秒時(shí),BPC的面積為18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】爭(zhēng)創(chuàng)全國(guó)文明城市,從我做起,某學(xué)校在七年級(jí)開(kāi)設(shè)了文明禮儀校本課程,為了解學(xué)生的學(xué)習(xí)情況,學(xué)校隨機(jī)抽取30名學(xué)生進(jìn)行測(cè)試,成績(jī)?nèi)缦?/span>(單位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93,整理上面的數(shù)據(jù)得到頻數(shù)分布表和頻數(shù)分布直方圖:

成績(jī)()

頻數(shù)

5

11

2

回答下列問(wèn)題:

(1)以上30個(gè)數(shù)據(jù)中,中位數(shù)是_____;頻數(shù)分布表中____;_____;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若成績(jī)不低于86分為優(yōu)秀,估計(jì)該校七年級(jí)300名學(xué)生中,達(dá)到優(yōu)秀等級(jí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)OBD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長(zhǎng)交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( 。

A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.(注:結(jié)果保留π )

(1)把圓片沿?cái)?shù)軸向右滾動(dòng)半周,點(diǎn)B到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是   數(shù)(填“無(wú)理”或“有理”),這個(gè)數(shù)是   ;

(2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是   ;

(3)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,﹣1+3,﹣4,﹣3

   次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最近,第   次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最遠(yuǎn).

當(dāng)圓片結(jié)束運(yùn)動(dòng)時(shí),A點(diǎn)運(yùn)動(dòng)的路程共有   ,此時(shí)點(diǎn)A所表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線(xiàn)AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線(xiàn)AD的取值范圍是 ;

(2)問(wèn)題解決:

如圖②,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問(wèn)題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線(xiàn)段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作與探究.對(duì)數(shù)軸上的任意一點(diǎn)P

①作出點(diǎn)N使得NP表示的數(shù)互為相反數(shù),再把N對(duì)應(yīng)的點(diǎn)向右平移1個(gè)單位,得到點(diǎn)P的對(duì)應(yīng)點(diǎn)P.我們稱(chēng)PPN變換點(diǎn);

②把P點(diǎn)向右平移1個(gè)單位,得到點(diǎn)M,作出點(diǎn)P′′使得P′′M表示的數(shù)互為相反數(shù),我們稱(chēng)P′′PM變換點(diǎn).

1)如圖,若點(diǎn)P表示的數(shù)是-4,則PN變換點(diǎn)P表示的數(shù)是 ________

2)若PM變換點(diǎn)P′′表示的數(shù)是2,則點(diǎn)P表示的數(shù)是 ________ ;

3)若P,P′′分別為PN變換點(diǎn)和M變換點(diǎn),且OP2OP′′,求點(diǎn)P表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn)P(1,0),點(diǎn)P1次向上跳動(dòng)1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn)P2(-1,1),第3次向上跳動(dòng)1個(gè)單位,第4次向右跳動(dòng)3個(gè)單位,第5次又向上跳動(dòng)1個(gè)單位,第6次向左跳動(dòng)4個(gè)單位,依此規(guī)律跳動(dòng)下去,點(diǎn)P2019次跳動(dòng)至點(diǎn)P2019的坐標(biāo)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹(shù)上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹(shù)枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線(xiàn)上).經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線(xiàn)在手中的點(diǎn)A在同一條直線(xiàn)上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線(xiàn)與水平線(xiàn)夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距墻3米處固定擺放,通過(guò)計(jì)算說(shuō)明:若兵兵充分利用梯子和一根米長(zhǎng)的竹竿能否觸到掛在樹(shù)上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求證:此方程總有兩個(gè)實(shí)數(shù)根;

(2)若此方程有一個(gè)根大于0且小于1,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案