【題目】如圖,已知∠BAC65°,D為∠BAC內(nèi)部一點(diǎn),過DDBABBDCACC,設(shè)點(diǎn)E、點(diǎn)F分別為AB、AC上的動(dòng)點(diǎn),當(dāng)△DEF的周長(zhǎng)最小時(shí),∠EDF的度數(shù)為_____

【答案】50°

【解析】

先作點(diǎn)D關(guān)于ABAC的對(duì)稱點(diǎn)M、N,連接MNABAC于點(diǎn)E、F,此時(shí)△DEF的周長(zhǎng)最小,再根據(jù)四邊形內(nèi)角和與等腰三角形的性質(zhì)即可求解.

解:如圖所示:

延長(zhǎng)DBDCMN,使MBDBNCDC,

連接MNABAC于點(diǎn)E、F,

連接DE、DF,此時(shí)△DEF的周長(zhǎng)最。

∵DB⊥AB,DC⊥AC,

∴∠ABD∠ACD90°,∠BAC65°

∴∠BDC360°90°90°65°115°,

∴∠M+∠N180°115°65°

根據(jù)對(duì)稱性質(zhì)可知:

DEME,DFNF,

∴∠EDM∠M∠FDN∠N,

∴∠EDM+∠FDN65°,

∴∠EDF∠BDC﹣(∠EDM+∠FDN)=115°65°50°

故答案為50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點(diǎn)為BAC經(jīng)過圓心O并與圓相交于點(diǎn)DC,過C作直線CEAB,交AB的延長(zhǎng)線于點(diǎn)E

1)求證:CB平分∠ACE;

2)若BE=3,CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①為折疊椅,圖②是折疊椅撐開后的側(cè)面示意圖,其中椅腿ABCD的長(zhǎng)度相等,O是它們的中點(diǎn).為使折疊椅既舒適又牢固,廠家將撐開后的折疊椅高度設(shè)計(jì)為32 cm,∠DOB=100°,那么椅腿AB的長(zhǎng)應(yīng)設(shè)計(jì)為(結(jié)果精確到0.1 cm,參考數(shù)據(jù):sin50°=cos40°≈0.77,sin40°=cos50°≈0.64,tan40°≈0.84,tan50°≈1.19)(  )

A. 38.1 cm B. 49.8 cm C. 41.6 cm D. 45.3 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:等腰三角形中底邊與腰的比叫作底角的鄰對(duì)(can).如圖①,在ABC中,ABAC,底角∠B的鄰對(duì)記作canB,這時(shí)canB.容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值是一一對(duì)應(yīng)的,根據(jù)上述角的鄰對(duì)的定義,解下列問題:

(1) . can30°______ __;

(2) . 如圖②,已知在ABC中,ABAC,canBSABC24,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠C90°,延長(zhǎng)CA至點(diǎn)D,使ADAB.設(shè)F為線段AB上一點(diǎn),連接DF,以DF為斜邊作等腰RtDEF,且使AEAB

1)求證:AEAF+BC

2)當(dāng)點(diǎn)FBA延長(zhǎng)線上一點(diǎn),而其余條件保持不變,如圖2所示,試探究AEAF、BC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°后,得到線段AB,則點(diǎn)B的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C90°,D是邊BC上一點(diǎn),連接AD,若∠BAD3CAD90°DCa,BDb,則AB________. (用含a,b的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上依次有AB、C三個(gè)港口,甲、乙兩船同時(shí)分別從A、B港口出發(fā),沿直線勻速駛向C港,最終到達(dá)C港.設(shè)甲、乙兩船行駛xh)后,與B港的距離分別為y1 y2 km, y1 、y2 x的函數(shù)關(guān)系如圖所示.

1)填空:A、C兩港口間的距離為_______km _______;

2)求圖中點(diǎn)P的坐標(biāo);

3)若兩船的距離不超過8km時(shí)能夠相互望見,求甲、乙兩船可以相互望見時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案