【題目】已知a、b、c在數(shù)軸上的位置如圖所示,所對應(yīng)的點分別為A、B、C,
(1)在數(shù)軸上表示2的點與表示5的點之間的距離為 ;
在數(shù)軸上表示﹣1的點與表示3的點之間的距離為 ;在數(shù)軸上表示﹣3的點與表示﹣5的點之間的距離為 ;由此可得點A、B之間的距離為 ,點B、C之間的距離為 ,點A、C之間的距離為 ;
(2)化簡:﹣|a+b|+|c﹣b|﹣|b﹣a|;
(3)若c2=4,﹣b的倒數(shù)是它本身,a的絕對值的相反數(shù)是﹣2,求﹣a+2b﹣c﹣(a﹣4c﹣b)的值.
【答案】(1)3,4,2,a﹣b,b﹣c,a﹣c;(2)﹣13
【解析】
(1)根據(jù)兩點間距離公式可得;
(2)結(jié)合數(shù)軸根據(jù)絕對值性質(zhì)去絕對值符號,再合并即可得;
(3)根據(jù)a、b、c在數(shù)軸上的位置,結(jié)合題目條件得出c=-2,b=-1,a=2,再將其代入化簡后的代數(shù)式即可
(1)5﹣2=3,3﹣(﹣1)=4,(3)﹣(﹣5)=2,A、B之間的距離為a﹣b,B、C之間的距離為b﹣c,A、C之間的距離為a﹣c,
故答案為;3,4,2,a﹣b,b﹣c,a﹣c;
(2)﹣|a+b|+|c﹣b|﹣|b﹣a|
=﹣(a+b)+(b﹣c)﹣(a﹣b)=﹣a﹣b+b﹣c﹣a+b=﹣2a+b﹣c;
(3)∵c2=4,﹣b的倒數(shù)是它本身,a的絕對值的相反數(shù)是﹣2,
∴c=﹣2,b=﹣1,a=2,
∴﹣a+2b﹣c﹣(a﹣4c﹣b)=﹣2a+3b+3c=﹣13.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小高從家騎車去單位上班,先走平路到達(dá)點A,再走上坡路到達(dá)點B,最后走下坡路到達(dá)工作單位,所用的時間x(分鐘)與離家距離y(千米)的關(guān)系如圖所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上班時一致,那么他從單位到家需要的時間是_______分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=8cm,C是線段AB上一點,AC=3.2cm,M是AB的中點,N是AC的中點.
(1)求線段CM的長;
(2)求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算與化簡
(1)計算:(6m2+4m﹣3)+2(2m2﹣4m+1);
(2)先化簡,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,∠BOE=90°,OF平分∠AOD,∠COE=20°.
(1)求∠BOD與∠DOF的度數(shù).
(2)寫出∠COE的所有余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線經(jīng)過四邊形OABC的頂點A、C,∠ABC=90°,OC平分OA與x軸正半軸的夾角,AB∥x軸,將△ABC沿AC翻折后得到△AB'C,B'點落在OA上,則四邊形OABC的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板放在同一平面內(nèi),使直角頂點重合于點O
(1)如圖①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度數(shù).
(2)如圖①,你發(fā)現(xiàn)∠AOD與∠BOC的大小有何關(guān)系?∠AOB與∠DOC有何關(guān)系?直接寫出你發(fā)現(xiàn)的結(jié)論.
(3)如圖②,當(dāng)△AOC與△BOD沒有重合部分時,(2)中你發(fā)現(xiàn)的結(jié)論是否還仍然成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應(yīng)值.
x | … | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | … | |
y | … | 3 | m | … |
求m的值;
(3)如下圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請說理證明.
(簡單應(yīng)用)
(2)如圖2,分別平分,若,,求的度數(shù)(可直接使用問題(1)中的結(jié)論).
(問題探究)
(3)如圖3,直線平分的外角,平分的外角,若,,猜想的度數(shù)為 .
(拓展延伸)
(4)在圖4中,若設(shè),,,試問與、之間的數(shù)量關(guān)系為: (用表示)
(5)在圖5中,平分,平分的外角,猜想與、的關(guān)系,直接寫出結(jié)論 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com