【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖.

1)畫出將△ABC向右平移2個單位得到△A1B1C1

2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2

3)在x軸上找一點P,滿足點P到點C1C2距離之和最小,并求出P點的坐標(biāo).

【答案】1)見解析;(2)見解析;(3)見解析,P點的坐標(biāo)(0).

【解析】

1)分別將點A、B、C向右平移2個單位,然后順次連接;

2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C以點O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后的對應(yīng)點,然后順次連接即可;

3)利用最短路徑問題解決,首先作C1點關(guān)于x軸的對稱點C3,再連接C2C3x軸的交點即為所求.

解:(1)如圖所示,△A1B1C1為所求做的三角形;

2)如圖所示,△A2B2C2為所求做的三角形;

3)∵C1坐標(biāo)為(﹣12),C2坐標(biāo)為(2,3),C3坐標(biāo)為(﹣1,﹣2),

設(shè)C2C3所在直線的解析式為y=kx+b,

,解得

C2C3所在直線的解析式為:yx

y0,則x

P點的坐標(biāo)(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩地相距300千米,甲、乙兩車同時從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達(dá)B地,停留1小時后,速度不變,按原路返回.設(shè)兩車行駛的時間是x小時,離開A地的距離是y千米,如圖是yx的函數(shù)圖象.

1)甲車的速度是  ,乙車的速度是  ;

2)甲車在返程途中,兩車相距20千米時,求乙車行駛的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀一段文字,再回答下列問題:已知在平面內(nèi)兩點的坐標(biāo)為,則該兩點間距離公式為.同時,當(dāng)兩點在同一坐標(biāo)軸上或所在直線平行于軸、平行于軸時,兩點間的距離公式可化簡成

1)若已知兩點,,試求兩點間的距離;

2)已知點在平行于軸的直線上,點的縱坐標(biāo)為7,點的縱坐標(biāo)為,試求兩點間的距離;

3)已知一個三角形各頂點的坐標(biāo)為,,你能判定這三點是否共線?若共線請說明理由,若不共線請求出圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P(m,n)是拋物線y=﹣+1上任意一點,l是過點(0,2)且與x軸平行的直線,過點P作直線PH⊥l,垂足為H,PH交x軸于Q.

(1)(探究)填空:當(dāng)m=0時,OP=   ,PH=   ;當(dāng)m=4時,OP=   ,PH=   

(2)(證明)對任意m,n,猜想OP與PH的大小關(guān)系,并證明你的猜想.

(3)(應(yīng)用)當(dāng)OP=OH,且m≠0時,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,ABAC,AB的垂直平分線交線段ACD,若△ABC和△DBC的周長分別是60 cm38 cm,則△ABC的腰長和底邊BC的長分別是( )

A. 22cm16cmB. 16cm22cm

C. 20cm16cmD. 24cm12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖, 是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是,當(dāng)點P到達(dá)點B時,P、Q兩點停止運動,設(shè)點P的運動時間,解答下列各問題:

經(jīng)過秒時,求的面積;

當(dāng)t為何值時, 是直角三角形?

是否存在某一時刻t,使四邊形APQC的面積是面積的三分之二?如果存在,求出t的值;不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCECD均為等邊三角形,BC、D三點在一直線上,ADBE相交于點F,DF=3,AF=4,則線段FE的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車都從A地前往B地,如圖分別表示甲、乙兩車離A地的距離S(千米)與時間t(分鐘)的函數(shù)關(guān)系.已知甲車出發(fā)10分鐘后乙車才出發(fā),甲車中途因故停止行駛一段時間后按原速繼續(xù)駛向B地,最終甲、乙兩車同時到達(dá)B地,根據(jù)圖中提供的信息解答下列問題:

1)甲、乙兩車行駛時的速度分別為多少?

2)乙車出發(fā)多少分鐘后第一次與甲車相遇?

3)甲車中途因故障停止行駛的時間為多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,破殘的圓形輪片上,AB的垂直平分線交弧AB于點C交弦AB于點D.已知AB=24cmCD=8cm

1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)

2)求殘片所在圓的面積.

查看答案和解析>>

同步練習(xí)冊答案