梯形ABCD中,AD∥BC,S△ABD:S△BCD=3:7,那么它們的中位線把梯形分成兩部分的面積比為


  1. A.
    1:2
  2. B.
    1:3
  3. C.
    2:3
  4. D.
    1:4
C
分析:顯然,△ABD與△BCD等高,∴AD:BC=S△ABD:S△BCD=3:7,設(shè)AD=3k,BC=7k,(k>0),則中位線長為5k;中位線將梯形分成兩個等高的梯形,表示兩個梯形的面積,求比值即可.
解答:∵AD∥BC,
∴△ABD與△BCD等高,
∴AD:BC=S△ABD:S△BCD=3:7
設(shè)AD=3k,BC=7k,(k>0)
則中位線長為5k,
顯然,中位線將梯形分成兩個等高的梯形,設(shè)這個高為h,則兩小梯形面積分別為:
其面積比為4kh:6kh=2:3.
故選C.
點(diǎn)評:此題主要考查梯形中位線定理:梯形中位線等于上底和下底和的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中點(diǎn).
(1)求證:△MDC是等邊三角形;
(2)將△MDC繞點(diǎn)M旋轉(zhuǎn),當(dāng)MD(即MD′)與AB交于一點(diǎn)E,MC(即MC′)同時與AD交于一點(diǎn)F時,點(diǎn)E,F(xiàn)和點(diǎn)A構(gòu)成△AEF.試探究△AEF的周長是否存在最小值?如果不存在,請說明理由;如果存在,請計算出△AEF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE分別交BD、BC于點(diǎn)G、E,連接精英家教網(wǎng)DE.
(1)求證:四邊形ABED是菱形;
(2)若ED⊥DC,∠ABC=60°,AB=2,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB=CD,點(diǎn)E在BC的延長線上,且∠BDE=∠ADC.求證:AB•BD=DE•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,AB=5,AD=6,BC=12,點(diǎn)E在AD邊上,且AE:ED=1:2,點(diǎn)P是AB邊上的一個動點(diǎn),(P不與A,B重合)過點(diǎn)P作PQ∥CE交BC于點(diǎn)Q,設(shè)AP=x,CQ=y,則y與x之間的函數(shù)關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠ACB=45°,翻折梯形ABCD,使點(diǎn)C重合于點(diǎn)A,折痕精英家教網(wǎng)分別交邊CD、BC于點(diǎn)F、E,若AD=3,BC=12,
求:(1)CE的長;
(2)∠BAE的正切值.

查看答案和解析>>

同步練習(xí)冊答案