如圖,在平面直角坐標(biāo)系中,直線=分別與軸,軸相交于兩點(diǎn),點(diǎn)軸的負(fù)半軸上的一個動點(diǎn),以為圓心,3為半徑作.
(1)連結(jié),若,試判斷軸的位置關(guān)系,并說明理由;
(2)當(dāng)為何值時,以與直線=的兩個交點(diǎn)和圓心為頂點(diǎn)的三角形是正三角形?
(1)⊙P與x軸相切.理由見解析;(2)-8或k=--8

試題分析:(1)通過一次函數(shù)可求出A、B兩點(diǎn)的坐標(biāo)及線段的長,再在Rt△AOP利用勾股定理可求得當(dāng)PB=PA時k的值,再與圓的半徑相比較,即可得出⊙P與x軸的位置關(guān)系.
(2)根據(jù)正三角形的性質(zhì),分兩種情況討論,
①當(dāng)圓心P在線段OB上時,②當(dāng)圓心P在線段OB的延長線上時,從而求得k的值.
試題解析:(1)⊙P與x軸相切,
∵直線y=-2x-8與x軸交于A(-4,0),與y軸交于B(0,-8),
∴OA=4,OB=8.
由題意,OP=-k,
∴PB=PA=8+k.
∵在Rt△AOP中,k2+42=(8+k)2
∴k=-3,
∴OP等于⊙P的半徑.
∴⊙P與x軸相切.
(2)設(shè)⊙P1與直線l交于C,D兩點(diǎn),連接P1C,P1D,
當(dāng)圓心P1在線段OB上時,作P1E⊥CD于E,
∵△P1CD為正三角形,
∴DE=CD=,P1D=3.
∴P1E=
∵∠AOB=∠P1EB=90°,∠ABO=∠P1BE,
∴△AOB∽△P1EB.
,即
∴P1B=.
∴P1O=BO-BP1=8-
∴P1(0,-8).
∴k=-8.
當(dāng)圓心P2在線段OB延長線上時,同理可得P2(0,--8).
∴k=--8.
∴當(dāng)k=-8或k=--8時,以⊙P與直線l的兩個交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,D是△ABC的邊AC上的一點(diǎn),連接BD,已知∠ABD=∠C,AB=6,AD=4,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將一副三角板如圖疊放,如OB=,則OD=       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=4,AC=3,D、E分別是AB、AC上的動點(diǎn),在邊AC上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與△ABC相似.
(1)當(dāng)AD=2時,求AE的長;
(2)當(dāng)AD=3時,求AE的長;
(3)通過上面兩題的解答,你發(fā)現(xiàn)了什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

要設(shè)計(jì)一座2m高的維納斯女神雕像(如圖),使雕像的上部AC(肚臍以上)與下部BC(肚臍以下)的高度比,等于下部與全部的高度比,即點(diǎn)C(肚臍)就叫做線段AB的黃金分割點(diǎn),這個比值叫做黃金分割比.試求出雕像下部設(shè)計(jì)的高度以及這個黃金分割比?(結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC與△DEF的相似比為3:4,則△ABC與△DEF的周長的比為(    )
A.3:4B.4:3C.9:16D.16:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行于BC的直線DE把△ABC分成的兩部分面積相等.則=       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,□ABCD中,點(diǎn)E是AD邊的中點(diǎn),BE交對角線AC于點(diǎn)F,若AF=2,則對角線AC長為          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC與△DEF相似且面積比為4∶25,則△ABC與△DEF的相似比為________.

查看答案和解析>>

同步練習(xí)冊答案